
	

This	project	has	received	funding	from	the	European	Union's	Horizon	2020	research	and	innovation	
programme	under	grant	agreement	No	731593	

	

	

Dream-like	simulation	abilities	
for	automated	cars	

	

	

Grant	Agreement	No.	731593	
	

	

	

	

	

	

	

	

Deliverable:	 D1.2	–	System	Architecture	(Release	1)	

Dissemination	level:	 PU	–	Public	

Delivery	date:	 30/06/2017	

Status:	 Release	1,	final	

	 	

	 		

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	2	of	61	

	

Deliverable	Title	 System	Architecture	(Release	1)	

WP	number	and	title	 WP1	 Application	 domain	 requirements,	 Architecture	 and	 Product	
Quality	Assurance	

Lead	Editor	 Sean	Anderson,	USFD	

Contributors	
		

Mauro	Da	Lio,	UNITN		

Sebastian	James,	USFD	

David	Windridge,	MU	

Henrik	Svensson,	HIS	

Rafael	Math,	DFKI	

Mehemed	Yuksel,	DFKI	

Elmar	Berghofer,	DFKI	

Andrea	Saroldi,	CRF	

Creation	Date	 11/05/2017	 Version	number	 3.6	

Deliverable	Due	Date	 30/06/2017	 Actual	Delivery	Date	 30/06/2017	

Nature	of	deliverable	

x	 R	-	Report	

	 DEM	–	Demonstrator,	pilot,	prototype,	plan	designs	

	 DEC	–	Websites,	patents	filing,	press&media	actions	

	 O	–	Other	–	Software,	technical	diagram	

Dissemination	 Level/	 Audi-
ence	

x	 PU	–	Public,	fully	open	

	 CO	 -	 Confidential,	 restricted	 under	 conditions	 set	 out	 in	
MGA	

	 CI	–	Classified,	information	as	referred	to	in	Commission	De-
cision	2001/844/EC	

	

Version	 Date	 Modified	by	 Comments	

1.0	 11/05/2017	 Sean	Anderson	 Initial	definition	of	contents	

1.1	 18/05/2017	 Mauro	Da	Lio	
Contribution	 to	 General	 Architecture	 and	
Agent	Architecture	

1.2	 22/05/2017	 Mauro	Da	Lio	 Allocation	of	partners’	sections	and	tasks	

2.0	 30/05/2017	 Mauro	Da	Lio	
Integration	 of	 contributions	 from	 DFKI	 and	
HIS	

2.1	 1/06/2017	 Mauro	Da	Lio	
Integration	 of	 contributions	 from	 USFD	 and	
MU	

2.2	 2/06/2017	 Mauro	Da	Lio	 Integration	of	USFD	second	contribution.	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	3	of	61	

3.0	 14/06/2017	 Sean	Anderson	
Integration	 of	 DFKI,	 HIS	 and	 CRF	 contribu-
tions.	

3.1	 15/06/2017	 Mauro	Da	Lio	

Further	 contributions	 to	 sections	 3.3.3-3.3.4	
and	section	6.3.	First	version	of	the	Executive	
Summary.	

3.2	 16/06/2017	 Mauro	Da	Lio	
Further	editing	 section	4.	Moved	 section	4.8	
to	appendix.	

3.3	 16/06/2017	 Mauro	Da	Lio	
Further	 contributions	 to	 sections	 3.3.4	 and	
section	6.3.		

3.4	 19/06/2017	 Sean	Anderson	 Check	prior	to	review,	minor	edits.	

3.5	 27/06/2017	 Sean	Anderson	 Edits	based	on	reviewer	comments	

3.6	 30/06/2017	 Mauro	Da	Lio	 Final	check	prior	to	submission	

	

	 	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	4	of	61	

Definitions,	acronyms	and	abbreviations	

Abbreviation		 Meaning		

AD	 Autonomous	Driving	

ADAS	 Advanced	Driver	Assistance	System	

BG	 Basal	Ganglia	(a	number	of	subcortical	nuclei	of	the	brain)	

DNN	 Deep	Neural	Network	

D2	 Striatum	D2-type	receptors	

ECU	 Electronic	 Control	 Unit	 (a	 hardware	 device	which	 allows	 implementing	 software	 in	
the	car)	

Euro	NCAP	 European	New	Car	Assessment	Programme	

E/E	 Electrical	&	Electronic	

EGO	 Autonomous	vehicle	

GPe	 Globus	Pallidus	external	(one	of	the	nuclei	of	the	basal	ganglia)	

EH	 Electronic	Horizon	

GPS		 Global	Positioning	System	

GPU	 Graphical	Processing	Unit	

HIL	 Hardware	in	the	Loop	

HMI		 Human	Machine	Interface		

HW		 Hardware		

LIDAR	 Laser	Imaging	Detection	and	Ranging	(a	laser	range	sensor)	

LWPR	 Locally	Weighted	Projection	Regression	(a	machine	learning	algorithm)	

I/O		 Input	/	Output		

MIL	 Model	in	the	Loop	

MSPRT	 Multi-hypothesis	Sequential	Probability	Ratio	Test	algorithm	

NP	 Normal	Production	

OBE	 On	Board	Equipment	

RV	 Remote	Vehicle	

RTK	 Real	Time	Kinematic	

SAE		 SAE	International,	formerly	the	Society	of	Automotive	Engineers		

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	5	of	61	

SNr	 Substantia	Nigra	pars	reticulata	

V2I		 Vehicle	to	Infrastructure		

V2V		 Vehicle	to	Vehicle		

V2X		 Vehicle	to	any	(where	x	equals	either	vehicle	or	infrastructure)		

VRU	 Vulnerable	Road	User	

WTA	 Winner	Takes	All	algorithm	

	

	 	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	6	of	61	

	

Executive	Summary	

This	document	is	the	first	version	of	the	System	architecture.		

The	general	architecture	foresees	three	environments	(Figure	1):	the	“wake	state”:		the	online	real	driving	en-
vironment;	the	“dream	state”:	the	offline	learning	and	optimization	environment;	and	the	“quality	assurance”	
test	environment.	

This	 deliverable	 release	 (release	 1)	 gives	 a	 detailed	 description	 of	 the	 architecture	 of	 the	 co-driver	 agent	
(online	part)	and	general	guidelines	for	the	implementation	of	the	dreams	mechanism	(offline	part).	The	latter	
will	be	further	specified	in	the	next	release	2.	

The	co-driver	adopts	a	biologically	inspired	architecture	with	three	main	loops	(Figure	2):		

a) The	“dorsal	stream”	which	enacts	hierarchical	 layered	 inverse	models.	 It	generates	affordances	from	
the	sensory	input.	

b) An	action	selection	mechanism	(“basal	ganglia”)	that	operates	on	several	levels	of	the	hierarchy.	
c) A	“cerebellum”	that	learns	forward	models.			

One	 important	aspect	of	 this	architecture	 is	 the	adoption	of	a	 topographic	 spatial	 representation	of	actions	
that	 is	analogous	to	the	human	motor	cortex.	The	dorsal	stream	creates	affordances	that	result	 in	active	re-
gions	on	this	map.	The	dorsal	stream	also	completely	inhibits	actions	that	have	never	to	be	selected,	because	
they	are	related	to	probable	collisions.	This	artificial	motor	cortex	becomes	the	input	for	a	statistically	robust	
action	selection	mechanism	bio-inspired	by	human	“basal	ganglia”.		

The	agent	has	several	potential	benefits	from	this	architecture:		

1) The	offline	learning	problem	can	be	divided	between	learning	separate	loops	(a,	b,	c	listed	above).	For	
example,	optimal	inverse	models	for	(a)	can	be	synthesized	with	optimal	control	on	learnt	dynamics	(c	
is	learnt	online).	Section	7	gives	an	example	of	how	this	may	happen.		

2) The	inhibition	mechanism	in	the	motor	cortex	will,	 in	principle,	guarantee	system	safety	in	the	sense	
that,	 if	 the	system	has	correctly	 learnt	the	 inverse	models,	no	dangerous	action	may	ever	be	chosen	
(this	form	of	proving	safety	may	be	of	great	help	for	market	introduction).	The	agent	architecture,	and	
its	 inherently	 parallel	 topographic	 processing,	 can	 be	 implemented	with	 Deep	 Neural	 Networks	 for	
which	Graphical	Processing	Unit	boards	and	middleware	software	(almost	automotive	grade)	has	be-
come	available.		

3) The	 agent	 learning	 in	 the	 wake	 state	 consists	 of	 the	 learning	 of	 forward	 emulators	 (c);	 the	 offline	
(dream)	 learning	 consists	 of	 the	 learning	 and	optimization	of	 inverse	models	 exploiting	 the	 forward	
models	learnt	in	the	wake	state;	the	action	selection	mechanism	can	be	exploited	for	action	discovery	
(motivated	learning).		

4) The	system,	which	now	uses	off-the-shelf	automotive	sensors	is	scalable	to	future	perception	system	
developmens.	The	DNN	implementing	the	dorsal	stream	needs	to	be	retrained	for	the	new	input	sig-
nals	of	every	training	pair	(the	output	activation	of	the	motor	cortex	being	the	same	in	the	same	situa-
tion).	This	means	that	the	collected	scenarios	used	for	dreams	can	be	reused	once	a	model	of	the	new	
sensor	system	is	available	(Figure	2).		

5) The	system	 is	portable	 to	different	vehicles	because	 it	may	be	 retrained	 (in	 the	same	situations)	 for	
operation	on	vehicles	with	different	dynamics	(we	will	demonstrate	this	 in	the	end	of	the	project	by	
porting	the	system	to	the	CRF	Jeep	Renegade).	

The	 hardware	 implementation	 of	 the	 agent	 foresees	 the	 use	 of	 an	 NVIDIA	 PX2	 board,	 which	 provides	 two	
graphical	processing	units	(GPU)	to	support	deep	neural	networks	used	to	implement	the	three	loops.	

The	test	sites	and	the	test	vehicles	are	described	in	section	5.	There	are	three	different	tracks	that	can	be	used	
for	the	“wake”	state	driving.	There	are	two	“MIA”	vehicles	customized	with	sensors	(including	a	Velodyne	32-
HL	Lidar)	for	development	and	one	Jeep	Renegade	for	final	testing	and	comparison	with	the	baseline	agent	of	
the	AdaptIVe	project.	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	7	of	61	

As	for	what	concerns	the	offline	environment,	this	deliverable	provides	a	description	of	the	driving	simulator	
environment,	with	an	indication	of	several	upgrades	to	be	implemented,	and	a	description	of	the	main	mecha-
nisms	that	will	be	used	to	discover	and	optimize	the	agent	behaviours.	These	include	generalized	motor	bab-
bling	for	bootstrapping	the	subsumption	architecture	that	is	part	of	the	dorsal	stream;	optimal	control,	to	syn-
thetize	optimal	goal-directed	actions;	and	bio-inspired	exploratory	learning.	One	example	of	the	learning	pro-
cess	is	given	in	section	7.	

	

	

	

	 	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	8	of	61	

	

Table	of	Contents	

1	 System	Architecture	...	12	
1.1	 Current	design	practices	and	innovation	of	Dreams4Cars	...	13	

2	 Agent	architecture	...	14	
2.1	 Dorsal	stream	–	layered	control	...	14	
2.2	 Basal	Ganglia	-	action	selection	..	15	
2.3	 Cerebellum	–	forward	models	..	16	

3	 Hardware	and	Software	Implementation	...	18	
3.1	 Organization	of	the	development	process	(from	AdaptIVe	to	Dreams4Cars)	18	
3.2	 Current	co-driver	architecture	(AdaptIVe)	...	18	
3.3	 Implementation	of	the	Dreams4Car	architecture	..	19	

3.3.1	 Single	motor	cortex	..	19	
3.3.2	 Deep	Neural	Network	implementation	and	GPU	computing	...	19	
3.3.3	 Interfaces	..	20	
3.3.4	 Digital	Maps	..	22	
3.3.5	 Semantic	annotation	..	25	
3.3.6	 Self-monitoring	system	...	25	

4	 Cloud	environment	features	and	parametrization	of	scenarios	..	27	
4.1	 Vehicle	Dynamics	Model	...	28	
4.2	 Environmental	Parameters	..	29	
4.3	 Interfaces	...	30	
4.4	 Generation	of	Road	Networks	...	30	
4.5	 Vehicle	and	Pedestrian	Modelling	...	32	
4.6	 Simulation	of	Sensors	...	33	
4.7	 Simulation	of	V2X	...	34	

5	 Vehicle	environments	and	test	sites	...	35	
5.1	 Test	sites	...	35	

5.1.1	 Test	sites	in	Germany:	..	35	
5.1.2	 Traffic	training	centre	Bremen	...	35	
5.1.3	 ADAC	Training	Centre	Bremen	...	36	
5.1.4	 Aldenhoven	test	centre	..	36	
5.1.5	 Test	site	in	Italy	...	37	

5.2	 Test	vehicles	...	37	
5.2.1	 Mia	electric	car:	..	37	
5.2.2	 Jeep	Renegade	..	40	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	9	of	61	

6	 Generation	of	dreams	..	42	
6.1	 Creation	of	imaginary	scenarios	..	42	

6.1.1	 Previous	event	simulation	..	42	
6.1.2	 Novel	event	simulation	...	42	
6.1.3	 Recombination	simulations	..	43	
6.1.4	 Goal	directed	simulations	...	43	
6.1.5	 Goal	exploration	simulation	...	43	

6.2	 Dream-generating	mechanisms	...	43	
6.2.1	 Optimality	criteria	...	45	

6.3	 Optimal	control	...	45	
6.4	 Exploratory	Learning	..	46	
6.5	 Action	discovery	...	47	

7	 Example	...	48	

8	 Bibliographical	References	...	51	

9	 Appendix	...	53	
9.1	 Comparison	of	Major	Cloud	Service	Providers	..	53	

9.1.1	 Amazon	Web	Services	..	54	
9.1.2	 Microsoft	Azure	..	56	
9.1.3	 Google	Cloud	Platform	...	58	
9.1.4	 Conclusions	...	60	

	

List	of	Diagrams	

Figure	1:	General	system	architecture.	..	12	
Figure	2:	Agent	sensorimotor	architecture.	...	14	
Figure	3:	Left:	the	host	vehicle	(blue)	 is	being	overtaken	by	another	vehicle	(yellow).	Right:	the	motor	cortex	
activation	as	computed	by	the	AdaptIVe	co-driver.	The	x	axis	is	the	steering	rate,	the	y	axis	is	the	longitudinal	
jerk	(the	acceleration	rate).	Every	point	on	the	right	map	represents	a	possible	instantaneous	action	of	the	co-
driver	(the	control	space	has	dimension	2).	The	red	region	represents	complete	inhibition	(by	steering	left	and	
increasing	the	acceleration	the	host	vehicle	would	collide	with	the	yellow	car).	Note	that	the	inhibited	region	is	
computed	as	the	union	of	many	rectangles,	which	represent	estimated	future	positions	(at	discrete	times)	of	
the	 yellow	 car,	 according	 to	 host	 vehicle	 simple	motor	 imagery.	 The	 yellow	 region	 represents	 actions	 that	
produce	trajectories	that	would	end	too	close	to	the	overtaking	car.	The	green	area	stands	for	actions	that	do	
not	violate	the	speed	limit.	The	small	circle	is	the	selected	action	(lane	keeping	at	constant	speed).	19	
Figure	4:	ADASIS	v2	description	of	paths	available	for	the	vehicle.	Path	1	 is	the	main	path.	Paths	2	and	3	are	
paths	departing	from	the	main	path	at	some	point.	..	22	
Figure	5:	Extension	of	the	notion	of	paths	to	the	lane-level,	which	is	planned	for	Dreams4Cars.	23	
Figure	6:	Coordinate	systems:	Curvilinear	coordinates	(s, n)	and	Cartesian	coordinates	(x, y).	See	equations	(2)	
for	 conversions.	 x0, y0, θ0	 are	 the	 initial	 point	 and	 heading	 of	 the	 path,	 xcs, ycs, θs	 the	 coordinates	 and	
heading	of	path	point	at	abscissa	s,	as	resulting	from	integration	of	(1),	α	 is	the	relative	heading	and	ψis	the	
absolute	heading.	...	24	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	10	of	61	

Figure	 7:	 Knowledge	 of	 the	 paths	 available	 to	 other	 road	 vehicles	 is	 required	 for	 correct	 inference	 of	 their	
intentions	and	prediction	of	their	paths.	...	25	
Figure	8:	Road	Network	Description	files	used	to	set	up	the	scenario,	input	devices,	external	communication,	
and	logging.	..	28	
Figure	9:	Ray	cast	wheel	vs.	convex	cast	wheel	when	hitting	a	crack	in	the	road	...	29	
Figure	10:	Manual	annotation	of	friction	slip	at	mesh-level	..	30	
Figure	11:	Network	generator:	way	point	editing	(left)	and	segment	editing	(right)	..	33	
Figure	12:	Mockup	top-down	view	(left)	of	the	current	scene	(right).	..	34	
Figure	13:	Test	sites	in	Bremen		(left:	traffic	training	centre	Bremen,	right:	ADAC	training	centre)....................	35	
Figure	14:	Pictures	from	traffic	training	centre	in	Bremen	..	36	
Figure	15:	Aldenhoven	Testing	Centre	track	elements	..	37	
Figure	16:	Mia	electric	car	and	the	principal	illustration	of	MIA	components.	..	37	
Figure	17:	In-vehicle	networks	for	control	and	sensor	communication.	..	39	
Figure	18:	Mia	control	model	and	communication	between	control	layers	..	40	
Figure	19:	CRF	AdaptIVe	demonstrator	vehicle	on	Jeep	Renegade	...	40	
Figure	20:	A	system	that	knows	only	lane	change	behaviours	will	never	overtake	in	a	two-lane	road	with	traffic	
in	both	directions	(see	text).	..	48	
Figure	21:	A	system	that	knows	only	lane	change	behaviours	will	never	overtake	in	a	two-lane	road	with	traffic	
in	both	directions	(see	text).	..	50	
Figure	22:	Cloud	Provider	Growth	Rate	and	Market	Share	..	53	

	

List	of	Tables	

Table	1:	Current	co-driver	input	(AdaptIVE).	..	21	
Table	2:	Current	co-driver	output	(AdaptIVe)	..	21	
Table	3:	MIA	technical	specifications	...	38	
Table	4:	MIA	available	interfaces	after	customization.	..	38	
Table	5:	The	external	sensor	setup	of	Mia	electric	vehicle.	...	38	
Table	6:	Score	of	different	cloud	providers	based	on	234	criteria	items.	..	54	
Table	7:	Amazon	EC2	instances	for	graphics-intensive	applications.	...	55	
Table	8:	Cost	per	24	hours	of	1-GPU	instance	operation	(Amazon	EC2).	...	56	
Table	9:	Cost	per	24	hours	of	4-GPU	instance	operation	(Amazon	EC2).	...	56	
Table	10:	Microsoft	Azure	instances	for	graphics-intensive	applications.	...	57	
Table	11:	Cost	per	24	hours	of	1-GPU	instance	operation	(Microsoft	Azure).	...	57	
Table	12:	Cost	per	24	hours	of	2-GPU	instance	operation	(Microsoft	Azure).	...	57	
Table	13:	Cost	per	24	hours	of	4-GPU	instance	operation	(Microsoft	Azure).	...	58	
Table	14:	Google	Compute	Engine	instances	for	graphics-intensive	applications.	..	58	
Table	15:	Cost	per	24	hours	of	pre-defined	1-GPU	instance	operation	(Google	Compute	Engine).	59	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	11	of	61	

Table	16:	Cost	per	24	hours	of	custom	1-GPU	instance	operation	(Google	Compute	Engine).	59	
Table	 17:	 Cost	 per	 24	 hours	 of	 pre-defined	 1-GPU,	 2-GPU,	 and	 4-GPU	 instance	 operation	 (Google	 Compute	
Engine).	..	60	

	

	 	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	12	of	61	

1 System	Architecture		
The	Dreams4Cars	system	is	composed	of	3	different	environments	(Figure	1):	

	

	

Figure	1:	General	system	architecture.	

	

1. The	vehicle	environment	(Real	Driving	inset),	in	which	the	Co-driver1	agent	drives	the	vehicles	(or	ob-
serves	the	human	driver).	This	is	the	“wake”	state,	in	which	the	agent	learns	forward	models	and	col-
lects	information	about	salient	situations	to	be	re-enacted	in	dreams.	

2. The	 cloud	 simulation	environment,	 implemented	 in	 the	OpenDS	 simulator	 (Simulation	 inset).	 This	 is	
the	“dream”	state,	in	which	a	copy	of	the	agent	drives	in	a	virtual	world	in	situations	that	recombine	
(efficiently)	the	salient	cases	annotated	at	point	1.	Optimization	of	the	agent	sensorimotor	system	and	
discovery	of	new	actions	takes	place	here.	

3. The	Quality	Assurance	environment	(implemented	in	the	Carmaker	simulator)	where	a	copy	of	the	op-
timized	agent	(output	from	point	2)	is	tested	against	a	growing	library	of	test	cases;	the	performance	
of	the	agent	is	assessed	with	several	types	of	metrics	(possibly	including	the	Euro	NCAP	metrics);	the	
progress	in	agent	abilities	is	monitored.		

The	current	release	of	this	deliverable	(D1.2,	System	Architecture,	release	1)	collects	the	work	carried	out	 in	
WP1.2	(system	architecture	of	the	runtime	and	offline	components)	and	WP1.3	(specifications	for	the	vehicles	
and	cloud)	and	hence	focuses	on	environments	1	and	2.	Deliverable	D1.4	will	describe	the	Quality	Assurance	
(WP1.4)	and	the	third	environment.	An	updated	release	of	this	same	deliverable	(D1.3	Architecture,	release	2)	
is	foreseen	for	month	24,	which	will	include	anticipations	of	the	test	cases	library	and	of	the	Quality	Assurance	
evaluation	metrics.	

																																																													

1	 	As	 already	defined	 in	D1.1,	 the	agent	driving	 the	vehicles	 in	 this	project	 is	 termed	“Co-driver	 agent”	or	 shortly	 “Co-
driver”,	because	it	might	share	the	control	with	the	human	diver	when	operating	at	different	levels	of	automation.	Hence,	
the	terms	“Co-driver”	and	“agent”,	together	or	in	isolation,	will	be	used	in	the	document	to	refer	to	this	artificial	driving	
agent.	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	13	of	61	

1.1 Current	design	practices	and	innovation	of	Dreams4Cars	
The	 current	 design	 best	 practices	 (when	 simulators	 are	 used)	 are	 shown	 by	 the	 dashed	 arrow:	 the	 driving	
agent	is	copied	in	a	simulator	and	tested	in	a	number	of	scenarios.	Evaluation	of	the	simulated	behaviour	may	
lead	to	updates	of	the	software	that	are	carried	out	manually.	Also,	the	test	scenarios	may	have	various	ori-
gins,	but	in	general	they	are	mostly	designed	by	the	engineers	that	develop	the	system,	based	on	their	under-
standing	of	which	important	situations	will	be	faced	during	real	driving,	or	they	are	recorded	situations.		

Alternatively	(see	http://www.gputechconf.com),	there	are	very	recent	examples	of	simulators	that	are	used	
to	 generate	 synthetic	 data	 (input/output	 pairs),	 for	 training	 e.g.,	Deep	Neural	Network	 for	 object	 detection	
and	classification.		

Another	very	recent	use	of	simulators	(refer	to	the	same	http://www.gputechconf.com)	is	simulating	sensors	
and	perception	system	in	various	environmental	situations	to	find	conditions	where	mis-detection	might	hap-
pen.	

Compared	 to	 the	 traditional	 design	 approach	 (even	 the	 most	 recent	 ones),	 the	 innovations	 introduced	 by	
Dreams4Cars	may	be	summarized	as	follows:	

a) Simulated	scenarios	are	generated	 from	situations	 that	 the	agent	has	seen	and	annotated	as	salient	
(e.g.,	when	something	happens	that	was	not	foreseen	by	the	co-driver).	Any,	even	slightly,	critical	situ-
ations	are	likely	to	produce	novel	design	scenarios	that	might	be	unknown	to	human	designers	(or	the	
human	designers	might	discover	only	with	long	analysis	of	recorded	logs).	

b) The	agent	 can	automatically	 discover	and	optimize	new	 strategies	 (learning	 from	 its	own	 “dreams”)	
whereas	in	the	traditional	human	driven	approach,	engineers	have	to	diagnose	code	functionality,	up-
date	the	source	code	and	test	the	new	code	(which	is	clearly	slower,	more	erratic	and	error	prone).	

With	point	a)	Dreams4Cars	seeks	to	imagine	new	relevant	situations	from	its	own	experiences;	with	point	b)	
Dreams4Cars	seeks	to	optimally	update	the	agent	abilities.	

In	order	to	implement	point	a)	two	elements	are	required:	1)	the	ability	for	the	agent	to	form	internal	models	
or	expectation	of	action	outcomes,	so	that	salient	situations	can	be	discovered;	2)	efficient	mechanisms	to	re-
combine	recorded	situations	into	effective	dreams.	

In	order	to	implement	point	b)	two	other	elements	are	necessary:	1)	an	agent	that	can	self-reconfigure	its	per-
ception-action	architecture	and	2)	methods	to	discover	and	optimize	behaviours.	

	 	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	14	of	61	

2 Agent	architecture	
The	agent	architecture	is	bio-inspired:	it	reproduces	the	following	loops	of	the	human	brain	(Figure	2),	which	
are	described	and	motivated	below.	

	

	

Figure	2:	Agent	sensorimotor	architecture.	

	

2.1 Dorsal	stream	–	layered	control	
The	“dorsal	stream”	takes	sensory	input	(“sensory	cortex”,	a)	and	gradually	morphs	(a	➝	b	➝	c)	this	input	into	
a	representation	of	possible	actions	(affordances),	which	are	encoded	as	patterns	of	activity	in	the	“motor	cor-
tex”	(c).	Overall	the	dorsal	stream	aims	at	implementing	simultaneous	parallel	action	priming	according	to	the	
affordance	competition	hypothesis	by	Cisek	[1].		

Layered	(subsumption)	organization	will	be	implemented2	in	the	dorsal	stream	to	produce	strategies	of	higher-
level	of	complexity	 (such	as	playing	complex	sequences	of	actions).	Learning	and	optimizing	 these	strategies	
(at	all	levels)	is	the	primary	goal	of	Dreams4Cars.	This	translates	into	learning	the	mapping	from	perception	to	
affordances.	Note	that	the	goal	of	the	dorsal	stream	is	to	produce	many	potential	actions,	not	just	one	(the	se-
lection	of	the	actual	action	to	be	executed	will	be	carried	out	later).	The	fact	that	Dreams4Cars	maps	percep-
tion-to-(many)-affordances	and	then	affordances-to-(one)-action	in	two	steps,	instead	of	perception-to-(one)-
action	 in	 a	 single	 step,	 differentiates	Dreams4Cars	 from	other	 examples	of	 learning	perception-action	maps	
such	as,	e.g.,	[2].	Separating	affordance	generation	from	action	selection	achieves	the	same	advantages	of	the	
biological	 solution:	1)	better	 adaptive	behaviour,	 resulting	 from	selection	among	a	pool	of	potential	 actions	
and	2)	the	learning	of	new	affordances	allows	the	agent	to	develop	new	behaviours	without	needing	to	retrain	
the	action	selection	mechanism	(this	translates	to	better	scalability	to	complex	situations).		

In	 the	 co-driver	 dorsal	 stream,	 information	 is	 typically	 processed	 in	 two-dimensional	 topographic	 form.	 The	
sensory	source	may	vary:	it	may	be	the	visual	field	(here	considered	under	the	banner	“future	extensions”);	or	
it	may	be	an	image	representing	the	raw	scans	of	a	multi-beam	LIDAR	(or	it	may	even	be	multi-sensory	input	

																																																													
2	The	details	of	the	implementation	are	given	in	the	next	sections.	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	15	of	61	

such	as	cameras	and	LIDAR);	or	 it	may	be	a	bird’s	eye	view	of	 the	surrounding	environment	with	obstacles,	
such	 as	 can	 be	 derived	 from	 the	 high-level	 output	 of	many	 automotive	 sensors.	 For	 example,	 digital	maps	
combined	with	 localization	and	 sensors	 that	provide	object	detection	and	classification	may	be	 sufficient	 to	
produce	a	bird’s	eye	view	of	the	scene	(the	various	arrows	indicated	under	the	banner	“Automotive	sensors”	
stand	for	current	technologies	that	will	be	used	 in	Dreams4Cars).	Direct	use	of	high-level	automotive	sensor	
output	to	compute	the	activation	patterns	in	the	motor	cortex	is	also	possible	(and	indeed,	this	is	what	is	im-
plemented	in	AdaptIVe).		

Hence,	once	perceptual	data	are	mapped	into	activity	patterns	representing	possible	actions	in	the	motor	cor-
tex,	 the	Dreams4Cars	 system	becomes	 largely	 independent	 from	 the	 actual	 perception	 system	 and	 sensors	
and	 hence	 more	 portable	 between	 different	 vehicle	 systems	 (portability/interoperability	 is	 one	 point	 of	
WP1.2).	

Whichever	the	sensor	system,	the	final	result	of	the	dorsal	stream	processing	will	thus	be	a	pattern	of	activa-
tions	in	a	two-dimensional	map	that	we	call	“motor	cortex”	in	analogy	with	the	biological	ones.	Each	active	re-
gion	in	the	“motor	cortex”	will	represent	a	combination	of	lateral	and	longitudinal	control	that	corresponds	to	
a	distinct	feasible	action	(this	approach	was	first	used	in	InteractIVe,	[3],	Fig.7).		

In	 this	way,	 affordances	are	 represented	by	active	 regions	 (typically	humps)	of	 the	 cortex	and	 learning	new	
motor	 strategies	means	updating	 the	dorsal	 stream	so	 that	new	affordances	appears	as	new	active	 regions.	
The	height	of	the	motor	cortex	humps	will	encode	the	merits	of	each	action	(inversely	related	to	 its	cost)	or	
their	saliency	from	the	point	of	view	of	the	agent	affordable	actions.		

Actions	leading	to	collisions	(D1.1	section	2.4	system	requirements	priority,	point	1-a	Safety)	will	be	completely	
inhibited	so	they	will	never	be	chosen.	In	principle,	we	will	therefore	have	a	collision-free	system	(as	 long	as	
there	is	at	least	one	feasible	action,	the	system	has	learnt	correct	mapping	and	all	relevant	objects	have	been	
perceived).	 A	 system	 that	 “knows”	more	 strategies	will	 generate	more	 affordances	 and	will	 have	more	 and	
better	options.	A	well-trained	system	will	 in	addition	evaluate	the	merit	of	each	strategy	more	precisely	and	
hence,	for	example,	might	be	able	to	adopt	cautious	behaviour	when	required	(such	as	situations	where	some	
part	of	the	surrounding	environment	is	precluded	from	the	sensors).	Interestingly	the	system	should	be	able	to	
discover	by	itself	some	rules	of	the	driving	code	(e.g.	moderating	speed	in	certain	circumstances).	

Actions	violating	priorities	of	lesser	importance	(D1.1	section	2.4	system	requirements	priority,	points	1-b	Traf-
fic	rules	etc.)	will	be	only	partially	inhibited,	so	that	the	system	will	choose	to	break	a	traffic	rule	if	this	is	nec-
essary	to	avoid	a	collision.	For	example,	 let	us	 imagine	that	a	vehicle	 is	approaching	an	intersection	and,	be-
cause	of	another	vehicle’s	fault,	there	is	no	collision	free	trajectory	except	for	one	violating	the	speed	limit	(ac-
celerating	for	passing	before	the	oncoming	obstacles).	In	this	case,	partial	inhibition	for	traffic	rules	allows	the	
formation	of	a	shallow	peak	in	the	motor	cortex	corresponding	to	the	strategy	that	violates	the	speed	limit	and	
the	agent	will	choose	this	option	if	there	are	no	other	choices	(many	examples	of	this	type	could	be	made).		

2.2 Basal	Ganglia	-	action	selection	
The	action-selection	mechanism	may	operate	at	 several	 levels	within	 the	hierarchical	 subsumption	architec-
ture.		At	the	lowest	level,	it	operates	on	the	“motor	cortex”:	it	takes	the	motor	cortex	as	input	and	returns	a	
copy	of	the	motor	cortex	with	only	one	active	hump	(which	is	the	action	that	is	gated	to	the	motor	system).		
The	selection	occurs	by	suppressing	all	the	affordance	humps	except	one,	which	is	represented	by	the	green	
round-arrowhead	line	 in	Figure	2.	 	At	a	higher	 level,	 it	may	prove	to	be	necessary	to	model	a	separate	basal	
ganglia	loop	on	the	output	of	the	DNN	whose	output	is	grounded	symbolic	representations	of	salient	environ-
mental	features	and	potential	actions.		Thus,	using	basal	ganglia	circuitry,	each	level	of	the	subsumption	archi-
tecture	would	be	“cleaned	up”	before	passing	its	output	to	the	level	below.		

In	biological	systems	action	selection	is	carried	out	by	the	basal	ganglia	(BG):	a	number	of	sub-cortical	nuclei	
that	cooperatively	achieve	this	task.	The	selected	action	 is	not	simply	the	highest	hump.	 In	other	words,	the	
selection	mechanism	is	not	Winner	Takes	All	(WTA);	rather	it	is	speculated	that	the	BG	implement	a	more	so-
phisticated	 algorithm	 such	 as	MSPRT	 (multi-hypothesis	 sequential	 probability	 ratio	 test)	 [4],	 which	may	 be	
seen	as	an	algorithm	to	carry	out	optimal	decision	making	between	alternative	actions	with	time	and	error	rate	
constraints.	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	16	of	61	

With	MSPRT	action	selection	becomes	robust	 to	sensory	noise	 (it	 integrates	evidence	 for	actions	over	some	
time)	and	robust	to	control	noise	(e.g.	a	slightly	lower	but	wider	hump	may	be	preferred	to	a	higher	but	nar-
rower	one	which	would	require	very	accurate	control).	Also,	MSPRT	provides	some	persistency	in	selected	ac-
tion,	such	that	the	agent	does	not	continuously	change	its	mind.	With	this	respect,	it	is	worth	commenting	that	
in	the	current	AdaptIVe	co-driver,	which	is	based	on	WTA,	some	hysteresis	had	to	be	included	in	the	selection	
mechanism.	 Indeed,	 it	 happened	 that	 in	 an	 overtake	 situation,	 with	 a	 very	 small	 speed	 difference,	 car-
following	and	lane-change	options	were	almost	equivalent,	and	the	agent	would	oscillate	between	the	two	be-
cause	of	noise.	

The	BG	circuitry	allows	many	selection	mechanisms	to	work	together.	Moreover,	it	has	not	only	“selection	cir-
cuits”	 for	 allowing	 actions	 to	 occur,	 but	 also	 a	NO-GO	 circuit	which	 can	 actively	 prevent	 selection	 (The	D2-
pathway	via	GPe➝	SNr).	This	could	be	useful	within	this	project	which	has	to	actively	suppress	certain	subsets	
of	actions	(avoiding	collision	for	example).		

The	BG	 is	also	endowed	with	a	mechanism	 -	neuro-modulatory	control	via	dopamine	 -	 for	changing	 its	 'set-
point'	for	selection	in	terms	of	ease	of	selection.	This	is	useful	in	learning,	which	can	benefit	from	'promiscuous	
selection'	when	exploring	the	environment,	and	more	conservative	selection	when	mature.		

Finally,	the	selection	mechanism	may	be	biased	(green	dashed	arrow)	to	implement	high-level	directives,	such	
as	changing	the	mode	of	operation	at	different	levels	of	automation.	

Thus,	 in	Dreams4Cars	 the	 action-selection	mechanism	will	 be	 inspired	by	 the	 above	principles,	 either	 being	
functionally	equivalent	or	by	reproducing	the	various	nuclei	and	processing	that	occur	there	(this	can	also	be	
implemented	with	topographic	computation).	

2.3 Cerebellum	–	forward	models	
Dreams4Cars	will	implement	forward	models.	Generally	speaking,	forward	models	should	produce	an	anticipa-
tion	of	the	entire	sensory	input,	such	as,	e.g.,	predicting	the	next	bird	eye’s	view	configuration.		

We	may	break	down	this	function	into	the	prediction	of	the	host	vehicle	trajectory,	which	depends	on	the	ac-
tion	that	is	selected	(or	potentially	selected)	by	the	agent,	and	the	prediction	of	the	other	agents’	behaviours.	

Dreams4Cars	will	evaluate	two	approaches.		

1) Hybrid	 analytical-learning	 approaches.	 One	 approach	 is	 learning	 the	 parameters	 of	 a	 vehicle	model	
(e.g.	a	bicycle	vehicle	model)	and	supplementing	it	with	learning	the	un-modelled	aspects	with	a	gen-
eral	learning	framework	such	as	LWPR.	This	approach	is	expected	to	be	more	robust	than	learning	the	
entire	 dynamics,	 because	 the	 vehicle	 model	 introduces	 some	 a-priori	 knowledge	 constraining	 the	
learning	process.	However,	one	important	reason	for	a	hybrid	approach	such	as	the	above,	using	LWPR	
for	the	learnt	part,	is	that	symbolic	derivatives	for	the	forward	dynamics	are	available	(both	the	equa-
tions	of	the	model	and	LWPR	allows	symbolic	differentiation),	which	in	turn	allows	efficient	formula-
tion	of	indirect	Optimal	Control	problems	(which	is	using	a	Variational	formulation	to	generate	the	co-
state	equations).	This	way	we	should	have	a	robust	and	efficient	mechanism	to	synthetize	optimal	be-
haviours	[5]	from	learnt	dynamics	(WP3.4,	WP3.5).	
To	predict	the	behaviour	of	other	vehicles,	a	simplified	mirroring	mechanism	may	be	used,	which	may	
exploit	the	forward	models	built	as	described	above.	Simple	mirroring	mechanisms	have	already	been	
used	in	AdaptIVe	and	InteractIVe	projects	[3].	

2) Neural	 Networks.	 Neural	 Networks	 (inspired	 by	 the	 adaptive	 filter	 model	 of	 cerebellar	 function)	
and/or	Deep	Neural	Networks	may	be	used	 for	either	 learning	 the	un-modelled	dynamics	 (replacing	
LWPR)	 or	 for	 learning	 the	 complete	 dynamics	 (which	may	 be	 particularly	 useful	 for	 learning	 those	
agents	that	have	no	simple/immediate	mathematical	model).	The	advantage	of	this	second	option	 is	
that	it	will	be	more	consistent	with	the	DNN	implementations	of	the	layered	control	and	action	selec-
tion	loops	(hence	using	same	training	tools,	see	below).	Also,	in	this	case	we	may	exploit	some	ideas	
related	to	inversion	of	DNN	such	as	to	generate	the	expected	input	from	patterns	of	activation	repre-
senting	various	output	symbols	[6],	[7]	.	The	advantage	of	this	approach,	besides	being	more	general,	
is	that	“interpolation”	between	symbols	becomes	possible	and	generates	interpolated	input:	in	[7]	hy-

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	17	of	61	

brid/imaginary	chairs,	cars,	 tables	are	produced	 in	this	way.	 	The	mechanism	should	however	be	ex-
tended	to	generation	of	interpolated	behaviours	and	situations	(this	will	be	a	research	topic).	

In	biological	systems	forward	models	may	have	several	uses:	a)	in	overt	action	(online	use)	they	may	be	used	
to	produce	expectations	of	the	sensory	feedback,	and	to	enhance	and	process	sensory	information;	b)	in	cov-
ert	actions	(offline	use)	they	may	be	used	for	motor	imagery	and	various	forms	of	simulation	of	actions.	

Dreams4Cars	foresees	3	particular	uses:	

1) A	self-monitoring	system	(online	use)	to	detect	anomalies	 in	vehicle	dynamics	or	sensor	data	quality	
and	to	detect	failures.	The	implementation	of	this	subsystem	is	described	in	section	3.3.6.	

2) Detection	 of	 novelties	 (online	 use),	 i.e.,	 mismatch	 between	 agent	 prediction	 and	 what	 happens	 at	
mostly	 the	higher-levels	of	 the	sensorimotor	architecture.	This	 is	 the	mechanism	to	annotate	salient	
situations	for	future	dreams.	The	implementation	of	this	subsystem	is	described	in	section	3.3.5.	

3) Learning	a	model	of	the	world	for	offline	simulations	(dreams).	

Concerning	the	offline	use	the	forward	models	learnt	by	the	agent	in	the	wake	state	may	either	be	used	direct-
ly	 (in	the	case	of	optimal	control)	or	 indirectly	 in	the	OpenDS	simulator.	 In	the	 latter	case	the	models	 learnt	
online	will	work	as	a	“blue-print”	for	the	forward	dynamics	models	of	the	simulator	environment.	With	this	re-
spect,	we	should	indeed	note	that	dreams	carried	out	 in	the	simulator	environment	(Figure	1)	are	not	direct	
interactions	of	 the	agent	with	 its	 internal	models	 (as	 it	 is	 for	human	dreams)	but	 rather	 interactions	of	 the	
agent	with	an	“equivalent”	copy	of	its	internal	model	that	runs	in	the	simulator	(it	is	more	like	a	human	inter-
acting	with	a	driving	simulator	tuned	to	what	he	has	 learnt,	 rather	than	dreaming	directly	 in	his	own	mind).	
This	 indirect	use	may	be	justified	because	the	cloud	environment	offers	many	advantages,	such	as	collecting	
salient	situations	 from	multiple	agents,	 (potentially)	more	computational	power	as	well	as	a	business	model	
for	the	deployment	of	the	Dreams4Cars	technology.	

	 	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	18	of	61	

3 Hardware	and	Software	Implementation	

3.1 Organization	of	the	development	process	(from	AdaptIVe	to	Dreams4Cars)	
The	AdaptIVe	co-driver	is	implemented	in	an	in-vehicle	Linux	Debian	computer	system	(VBOX	3600,	based	on	
an	Intel	i7	CPU).		

For	fast	prototyping	and	testing	the	software	is	developed	in	Wolfram’s	Mathematica.	The	MathCode	add-on	
is	 used	 to	produce	C++	 source	 code	which	 can	be	 compiled	 for	model-in-the-loop	 (MIL)	 (CarMaker/Matlab)	
and	hardware-in-the-loop	(HIL)	or	demonstrator	vehicle	(VBOX).	For	the	analysis	of	the	logged	data	and	soft-
ware	development/testing/debugging	 the	MathCode	add-on	allows	calling	both	 the	compiled	 functions	 (i.e.,	
exactly	 the	 same	 used	 in	MIL/HIL	 environment)	 as	well	 as	 replacing	 them	 individually	with	 the	 interpreted	
source	Wolfram	Language	version	 (which	can	be	quickly	edited	and	tested).	 If	necessary,	any	other	C++	and	
Java	source	code	may	be	wrapped	as	an	external	MathCode	function	and	used	within	the	Mathematica	proto-
typing	environment.	This	allows	expansion	of	the	current	development	environment	with	new	tools	and	librar-
ies	required	by	Dreams4Cars	(for	example	from	contributing	partners)	and	enables	a	smooth	transition	from	
the	AdaptIVe	system	to	Dreams4Cars.		

The	interfaces	(input	and	output	signals	from	the	co-driver	module	are	defined	in	a	master	spreadsheet	docu-
ment.	 Software	 scripts	 in	 Ruby	parse	 the	master	 interface	 document	 and	 generate:	 a)	 the	Mathematica	 in-
put/output	functions,	b)	buses	for	Simulink	to	be	used	 in	the	CarMaker	MIL	environment,	c)	header	files	 for	
C++	code	(this	has	greatly	reduced	interface	errors)	for	HIL	implementations.	We	plan	to	maintain	this	organi-
zation	for	the	interfaces	of	Dreams4Cars.		

3.2 Current	co-driver	architecture	(AdaptIVe)	
From	the	point	of	view	of	 the	software,	 the	AdaptIVe	co-driver	 implements	a	 two-layer	 control	architecture	
(dorsal	stream,	Figure	2).		

The	bottommost	layer	is	made	of	Optimal	Control	motor	primitives:	these	are	produced	with	a	third-order	lin-
ear	kinematic	plant	that	allows	the	primitives	to	be	produced	in	closed	form,	which	in	turn	allows	fast	enough	
computation	of	the	motor	cortex	activation	map.	The	caveat	is	that,	by	using	a	linear	kinematic	plant	model,	
simplifications	and	 limitations	are	 introduced:	the	model	 is	good	for	smooth	vehicle	control,	such	as	 in	ordi-
nary	 driving	 conditions,	 but	 neglects	 non-linear	 phenomena	 that	may	 happen	when	 it	 is	 necessary	 to	 drive	
closer	to	the	limit	of	manoeuvrability	of	the	vehicle,	such	as	in	critical	situations.		

The	 second	 layer	 of	 the	 current	 co-driver	 evaluates	 three	 strategies:	 a)	 change	 to	 the	 left	 lane	 (if	 a	 lane	 is	
available),	b)	remain	in	the	current	lane	c)	change	to	the	right	lane.		

With	the	above	two	layers,	the	system	is	capable	of	following	one	road	path,	such	as	given	by	a	navigator,	and	
adapting	to	speed	limits,	road	curvature,	surrounding	vehicle	traffic	(including	changing	 lane	if	the	vehicle	 in	
front	 is	 slower),	 stop	and	start	 in	congested	 traffic,	emergency	stop	 (or	evasive	manoeuvre)	 for	obstacles	 in	
the	lane	and	stop	and	start	at	traffic	light	that	support	I2V	(essentially	the	system	implements	level	3	automa-
tion	 in	 roads	where	 intersections	 –including	 pedestrian	 intersections–	 are	 all	 regulated	 by	 intelligent	 infra-
structures	with	I2V).	

To	make	one	example,	Figure	3	shows	one	of	the	many	situations	tested	in	AdaptIVe,	which	is	the	case	when	
the	host	vehicle	is	being	overtaken	by	another	vehicle	(Figure	3,	left).		

Figure	3,	right,	shows	regions	of	the	motor	cortex	that	are	completely	inhibited	(red)	or	partially	inhibited	(yel-
low)	that	respectively	correspond	to	colliding	or	moving	too	close	to	the	overtaking	vehicle	(see	Figure	3	cap-
tion	for	more	details).		

The	actual	motor	cortex	activation	can	be	 imagined	as	a	surface	over	the	area	depicted	 in	Figure	3,	right.	 In	
AdaptIVe	there	actually	are	3	of	these	surfaces,	one	for	each	of	the	3	level-2	strategies	mentioned	above.		

The	current	action	selection	mechanism	works	as	follows:	1)	for	each	of	the	three	level-2	strategies,	an	optimal	
action	 is	selected	using	the	WTA	criterion,	2)	then	the	three,	discrete,	optimal	actions	are	compared	using	a	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	19	of	61	

modified	WTA	criterion	that	allows	introducing	biases.	For	example,	a	bias	in	favour	of	the	right	lane	is	intro-
duced	to	make	the	agent	change	to	the	right	lane	whenever	it	is	not	inhibited.		

In	other	words,	the	highest	peak	of	the	three	surfaces	is	selected	(WTA)	and	of	the	three	peaks	one	is	selected	
with	the	modified	WTA	criterion.	

	

						 	

Figure	3:	Left:	the	host	vehicle	(blue)	is	being	overtaken	by	another	vehicle	(yellow).	Right:	the	motor	cortex	
activation	as	computed	by	the	AdaptIVe	co-driver.	The	x	axis	is	the	steering	rate,	the	y	axis	is	the	longitudi-
nal	jerk	(the	acceleration	rate).	Every	point	on	the	right	map	represents	a	possible	instantaneous	action	of	
the	co-driver	(the	control	space	has	dimension	2).	The	red	region	represents	complete	inhibition	(by	steer-
ing	left	and	increasing	the	acceleration	the	host	vehicle	would	collide	with	the	yellow	car).	Note	that	the	in-
hibited	region	is	computed	as	the	union	of	many	rectangles,	which	represent	estimated	future	positions	(at	
discrete	times)	of	the	yellow	car,	according	to	host	vehicle	simple	motor	imagery.	The	yellow	region	repre-
sents	 actions	 that	 produce	 trajectories	 that	 would	 end	 too	 close	 to	 the	 overtaking	 car.	 The	 green	 area	
stands	for	actions	that	do	not	violate	the	speed	limit.	The	small	circle	is	the	selected	action	(lane	keeping	at	
constant	speed).	

	

3.3 Implementation	of	the	Dreams4Car	architecture	
Having	clarified	how	the	baseline	AdaptIVe	architecture	works,	we	are	now	in	a	position	to	introduce	the	fu-
ture	implementation	of	Dreams4Cars.	

3.3.1 Single	motor	cortex	

One	 important	 change	 in	 the	 architecture	 is	 the	use	of	 only	one	motor	 cortex:	where	 the	AdaptIVe	 system	
computes	three	different	activation	maps	for	the	three	higher-level	strategies,	this	option	is	not	practical	for	a	
system	that	will	have	 to	develop	an	 increasing	number	of	different	 strategies	with	several	 layers	of	 control;	
that	would	also	call	for	developing	corresponding	levels	of	selection.		

Instead,	the	solution	will	adopt	a	single	representation	of	the	motor	space	and	have	various	peaks	represent-
ing	the	different	affordances	appearing	on	the	same	map.	Biases	(such	as	favouring	moving	to	the	rightmost	
lane	whenever	possible)	may	be	introduced	in	a	twofold	way:	a)	by	providing	more	strength	to	the	preferred	
action	or	b)	by	providing	a	separate	salience	map	as	a	secondary	input	to	a	BG-like	selection	mechanism.		

Learning	new	affordances	means	that	the	system	will	recognize	the	situation	and	produce	a	new	activity	peak	
for	the	combined	longitudinal-lateral	control	that	initiates	that	action.	Also,	the	height	of	the	activation	in	eve-
ry	point	of	the	action	space	will	encode	the	merit	(inverse	of	difficulty)	of	controlling	the	system	so	that	the	
width	of	an	activity	hump	will	also	tell	how	precise	the	control	must	be	for	that	particular	affordance	(which	in	
turn	will	favour	selection	of	larger	humps,	hence	more	robust	actions).	

3.3.2 Deep	Neural	Network	implementation	and	GPU	computing	

While	 the	 software	 for	AdaptIVe	 is	 coded	by	an	engineer,	Dreams4Cars	needs	 the	ability	 to	 re-configure	 its	
own	sensorimotor	system	as	learning	new	strategies	progresses	(project	objective	O1).		

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	20	of	61	

Quite	 recently,	 Deep	 Neural	 Networks	 (DNN)	 have	 received	 increasing	 attention	 because	 of	 the	 increasing	
availability	 of	 efficient	 software,	 but,	 above	 all,	 because	 dedicated	 GPU	 computing	 units	 greatly	 accelerate	
both	the	inference	and	the	training.	

In	 particular	NVIDIA	 has	 recently	made	 available	 to	 selected	 developers	 a	 new	 computing	 unit	 (DRIVE	 PX2)	
with	two	PASCAL	GPUs	which	delivers	more	than	20	TOPS.	This	board	has	been	adopted	in	several	demonstra-
tion	projects,	including	an	end-to-end	DNN	trained	for	lane	following	in	generic	roads	even	without	lane	mark-
ing	 [2],	 [8].	Many	 applications,	mostly	 concerning	 classification	 of	 visual	 scenes,	 running	 in	 real	 time,	 have	
been	showcased	at	the	latest	GPU	Technology	Conference	2017	(http://www.gputechconf.com).		

The	unit	is	supplied	with	low-level	and	mid-level	software.	The	low-level	software	includes	CUDA	drivers	that	
can	run	8-bit	inference	(4	times	faster	than	32-bit	integers)	and	TensorRT,	a	software	that	optimizes	a	trained	
DNN	for	even	faster	inference	time.	At	higher	level,	a	software	suite	called	“Driveworks”	provides	Application	
Program	Interfaces	for	sensor	input,	vehicle	control	output,	DNN	management,	tools	for	sensor	calibration	and	
for	data	logging	and	example	of	working	pre-trained	networks.		

While	the	NVIDIA	solutions	are	primarily	geared	towards	perception,	and	in	particular	visual	perception,	they	
also	appear	to	be	well	suited	to	supporting	the	execution	of	the	neural	networks	that	can	be	used	to	run	the	
architecture	of	 Figure	1	 (because,	 essentially	 the	networks	of	 Figure	1	operate	on	 tensors,	 e.g.	 topographic	
representation	 of	 actions);	 higher-levels	 of	 the	 dorsal	 stream	might	 be	 implemented	with	more	 traditional	
neural	networks,	which	are	also	supported.	

The	hardware	implementation	of	the	architecture	of	the	agent	will	therefore	be	an	NVIDIA	PX2.	Several	DNN	
software	suites	are	supported,	there	is	not	yet	a	commitment	towards	a	specific	package.	

3.3.3 Interfaces	

The	 co-driver	 interfaces	 include	 the	 sensor	 signals,	 the	motor	 output	 signals	 and	 the	 annotations	 of	 salient	
events	(Figure	1).	

In	 the	 initial	 implementation,	we	will	 adopt	 the	 exact	 same	 interface	 signals	 that	 are	 in	 use	 for	 the	project	
AdaptIVe.	There	are	currently	about	500	signals	that	can	be	divided	in	different	categories	(see	Tables	1	and	2,	
taken	from	D1.1,	tables	4	and	5).			

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	21	of	61	

Table	1:	Current	co-driver	input	(AdaptIVE).	

Categories	 Description	

Vehicle	Data	 List	 of	 information	 derived	 from	 on-board	 vehicle	 sensors:	
speed,	 lateral	and	longitudinal	acceleration,	yaw	rate,	steer-
ing	wheel	angle,	steering	wheel	speed,	etc.	

Localisation	

Localisation	of	the	vehicle,	as	resulting	from	combination	of	
data	about	absolute	position	of	the	vehicle	based	on	the	
global	positioning	system	and	vehicle	motion	sensor	infor-
mation	(yaw	rate,	acceleration	and	vehicle	speed).	

Automation	level	 The	current	automation	level	is	used	by	Co-driver	to	change	
its	way	of	operation.	

Fused	object	data	 List	of	objects	with	their	relative	position	and	velocity	in	
front	of,	behind,	at	the	left	and	right	side	of	the	ego-vehicle.		

Road	Description	data	 Road	path	described	as	resulting	from	Electronic	Horizon,	in-
cludes	road	geometry	and	other	information	about	the	road.	

V2X	data	 V2X	data	are	all	messages	received	from	communication	
with	other	road	users,	infrastructure	or	cloud.	

Requested	driving	style	 Some	parameters	about	the	driving	style	selected	by	the	
driver.	These	parameters	include	the	selected	target	speed.	

	

Table	2:	Current	co-driver	output	(AdaptIVe)	

Categories	 Description	

First	Trajectory	 Set	of	parameters	defining	the	first	trajectory	(space-time).	

Second	Trajectory	 Set	of	parameters	defining	the	first	trajectory.	

Internal	state	parame-
ters	

Extra	parameters	used	for	testing	

	

The	workflow	for	the	management	of	the	interfaces	has	been	developed	and	refined	in	the	AdaptIVE	project	
and	consists	of	a	centralized	repository,	where	new	signals	and	attributes	can	be	defined	(or	removed)	and	of	
a	number	of	procedures	and	scripts	that	generate	the	files	for	the	various	software	environments	(header	files,	
Matlab	buses,	Mathematica	 functions	accessing	 the	data	etc.).	These	procedures	allow	to	maintain	 the	con-
sistency	of	the	various	environments	interfaces	(vehicle,	simulators,	etc).	

For	Dreams4Cars,	 the	 interface	 specification	will	 evolve	 in	 the	project	but	we	still	plan	on	having	automatic	
generation	of	the	files	that	specify	the	interfaces	in	the	various	environments.	

For	Dreams4Cars,	extensions	of	the	interface	signals	is	planned.	The	main	additions	fall	in	three	categories:	

	

1) Maps.	 The	 digital	 maps	 for	 Dreams4Cars	 will	 have	 to	 be	 enhanced	 in	 several	 aspects	 (see	 section	
3.3.4).	Hence	the	interfaces	will	have	to	be	changed.	

2) Semantic	annotations	will	have	to	be	included	in	Table	2.	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	22	of	61	

3) Raw	sensor	data.	Although	Dreams4Cars	is	not	about	improving	sensor	technology,	it	has	to	be	open	
to	 the	 use	 of	 new	 perception	 systems	 that	might	 be	 developed	 in	 the	 future.	 The	 project	will	 thus	
evaluate	possible	expansions	shown	in	Figure	2	and	 in	particular	 inclusion	of	 lower-level	sensor	data	
(or	even	raw	sensor	data).			

3.3.4 Digital	Maps	

ADASIS	 is	 a	 standardization	 initiative	 for	 a	 data	model	 to	 represent	map	data	 ahead	of	 the	 vehicle	 (the	 so-
called	ADAS	horizon).	This	initiative	is	coordinated	by	the	ADASIS	Forum,	involving	vehicle	manufacturers,	nav-
igation	system	manufacturers,	ADAS	manufacturers	and	map	database	suppliers	(http://adasis.org).		

The	current	public	version	of	this	standard	is	v2.	In	this	version,	the	ADASIS	Horizon	is	made	available	as	a	list	
of	distinct	paths	that	can	be	produced	moving	ahead	of	the	vehicle.	There	is	a	main	path	which	starts	at	the	
vehicle	position,	 and	 secondary	paths	 that	depart	 at	 some	point	of	 the	main	path	 (Figure	4).	 Tertiary	paths	
may	depart	at	some	point	from	the	secondary	paths	(and	so	on).		

These	paths	are	produced	by	a	software	interface	module	(the	Horizon	Provider)	that	pre-processes	the	map	
database	to	show	the	vehicle	the	paths	that	it	can	follow	from	the	current	position	up	to	a	given	level	of	bifur-
cations	(many	applications,	including	the	AdaptIVe	co-driver,	uses	only	the	main	path).		

Pre-processing	the	road	network	in	a	way	to	show	paths	ahead	of	the	vehicle,	simplifies	the	design	of	Driver	
Assistance	applications,	as	they	do	not	then	need	to	discover	the	possible	paths	in	the	road	network	by	them-
selves.	

	

	

Figure	4:	ADASIS	v2	description	of	paths	available	for	the	vehicle.	Path	1	is	the	main	path.	Paths	2	and	3	are	
paths	departing	from	the	main	path	at	some	point.	

	

Every	 path	 is	 a	 simple	 data	 structure	 that	 describes	 various	 features	 of	 the	 road	 by	means	 of	 interpolating	
functions:	for	example,	the	latitude	and	longitude	of	the	path	line	is	sampled	at	various	longitudinal	abscissas.	
Other	points	along	the	path	can	be	determined,	given	the	interpolating	function.	The	collection	of	the	sampled	
values,	 together	 with	 the	 interpolating	 function	 are	 called	 “profiles”.	 In	 addition	 to	 longitude	 and	 latitude,	
there	are	profiles	for	altitude,	speed	limit,	heading,	curvature,	slope,	number	of	lanes	in	both	directions,	and	a	
few	others.	

The	profiles	of	different	features	may	be	sampled	at	different	abscissa.	For	example,	the	speed	limit	is	piece-
wise	constant	(interpolation	order	0)	and	sampled	only	at	points	where	it	changes.	The	path	curvature	is	typi-
cally	piecewise	linear	interpolated	(hence	describing	the	road	with	a	sequence	of	clothoids).	

The	coordinates	of	 the	centreline,	 the	heading	angle	and	 the	curvature	are	 (almost)	 redundant	 information.	
They	are	linked	by	the	following	equations:	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	23	of	61	

	
+,
+-
= 𝑐𝑜𝑠 𝜃 , +3

+-
= 𝑠𝑖𝑛 𝜃 , +6

+-
= 𝜅	 (1)	

	

Where	𝑠	is	the	curvilinear	abscissa,	𝑥 = 𝑥 𝑠 , 𝑦 = 𝑦 𝑠 	the	coordinates	of	path	point	at	𝑠,	𝜃 = 𝜃 𝑠 	the	head-
ing	angle	and	𝜅 = 𝜅 𝑠 	the	curvature.	

Hence,	in	principle,	one	path	could	be	reconstructed	by	integrating	the	curvature	twice,	with	given	initial	head-
ing	and	point	𝑥 0 , 𝑦 0 , 𝜃 0 .	However,	due	to	errors	 in	 the	map	database	 (and	coarse	data	discretization)	
the	two	are	rarely	consistent	(i.e.,	there	can	be	errors	between	the	location	of	the	path	derived	from	curvature	
integration	and	from	interpolation	of	the	latitude/longitude	pairs).	

As	shown	in	Figure	4,	ADASIS	v2	describes	road	segments.	Several	authors	have	noted	that	for	automated	driv-
ing	the	description	is	not	sufficient	[9],	[10].	For	example,	in	ADASIS	v2	there	is	information	about	the	number	
of	lanes	in	both	directions	but	there	is	no	information	about	the	lane	width	of	each	lane,	side	banking,	or	in-
formation	to	precisely	reconstruct	the	geometry	of	the	lanes	where	they	merge	or	divide.		

A	 “lanelet”	 approach	 has	 been	proposed	 in	 [10].	 The	 road	 network	 is	 described	with	 a	 graph	of	 connected	
“lanelets”.	Each	lanelet	is	modelled	with	its	right	and	left	edges	given	by	polylines.	Adjacent	lanelets	share	the	
same	polyline	edge.	Additional	features	are	stored	for	each	lanelet,	which	define	traffic	regulatory	elements,	
including	the	position	of	the	stop	lines,	which	is	important	for	intersections	(and	not	present	in	ADASIS	v2).	A	
graphical	editor	and	a	C++	library	are	available	for	using	lanelets	models.	However,	this	model	 is	similar	to	a	
map	database	and	needs	to	be	queried	to	obtain	the	paths	(here	called	corridors)	that	one	vehicle	might	fol-
low.	In	addition,	to	obtain	the	centreline	of	the	corridor	as	a	smooth	function	(which	is	helpful	for	trajectory	
planning)	additional	computations	are	necessary	and,	above	all,	there	may	be	situations	where	the	lane	mar-
gins	are	asymmetrically	distributed	with	respect	to	the	smoothest	central	line;	e.g.,	where	lanes	merge,	one	of	
the	margins	may	vary	suddenly	and	the	lane	in	the	middle	of	the	two	sides	is	not	the	smoothest	possible	tra-
jectory	(the	trajectory	a	human	driver	would	follow).	

For	Dreams4Cars,	 an	extension	of	 the	ADASIS	 v2	 is	 planned.	Albeit	 lanelets	might	be	used	 to	model	 a	 road	
network,	 the	description	of	“paths”	ahead	of	 the	host	vehicle	 is	preferable	at	 the	tactical	 level,	 in	particular	
because	 such	 paths	 simplify	 the	 discovery	 of	 trajectory	 affordances.	 Since	 ADASIS	 v3	 is	 not	 public	 yet,	
Dreams4Cars	will	extend	the	ADASIS	v2	model	by	including	all	the	features	that	are	necessary	for	producing	an	
unambiguous	detailed	geometric	description	of	lanes	and	roads.		

	

Figure	5:	Extension	of	the	notion	of	paths	to	the	lane-level,	which	is	planned	for	Dreams4Cars.	

	

In	particular,	the	following	extensions	are	planned:	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	24	of	61	

a) Dreams4Cars	will	adopt	a	lane-level	approach:	every	lane	will	be	associated	with	one	path	(Figure	5).	
Paths	will	merge	or	divide	where	lanes	merge	or	split.	Adjacent	lanes	will	be	modelled	with	adjacent	
paths.	

b) Each	path	is	determined	by	its	initial	point	and	heading	𝑥 0 , 𝑦 0 , 𝜃 0 	and	by	a	profile	of	curvature	
𝜅 𝑠 ;	hence	path	centreline	and	heading	are	determined	by	integration	of	(1);	Figure	6.	

c) For	every	lane/path,	a	curvilinear	coordinate	system	is	defined	formed	by	longitudinal	(𝑠)	and	lateral	
position	(𝑛).	Following	[11]	the	conversion	between	curvilinear	coordinates	(𝑠, 𝑛)	and	Cartesian	coor-
dinates	(𝑥, 𝑦)	is	obtained	as	follows	(Figure	6).	Using	a	curvilinear	coordinate	system	simplifies	the	se-
mantic	interpretation	of	the	movement	of	the	vehicles.	
	

𝑥 𝑠, 𝑛 = 𝑥𝑐 𝑠 − 𝑛𝑠𝑖𝑛 𝜃 𝑠 		 	

𝑦 𝑠, 𝑛 = 𝑦𝑐 𝑠 + 𝑛𝑐𝑜𝑠 𝜃 𝑠 	 (2)	

𝜓 𝑠 = 𝛼 𝑠 + 𝜃 𝑠 		 	

	

	

Figure	6:	Coordinate	systems:	Curvilinear	coordinates	(𝑠, 𝑛)	and	Cartesian	coordinates	(𝑥, 𝑦).	See	equations	
(2)	for	conversions.	𝑥>, 𝑦>, 𝜃>	are	the	initial	point	and	heading	of	the	path,	𝑥𝑐 𝑠 , 𝑦𝑐 𝑠 , 𝜃 𝑠 	the	
coordinates	and	heading	of	path	point	at	abscissa	𝑠,	as	resulting	from	integration	of	(1),	𝛼	is	the	

relative	heading	and	𝜓is	the	absolute	heading.	

	

d) For	every	path,	two	profiles	for	the	lateral	distance	of	left	and	right	lane	margins	will	be	defined	(the	
lane	margins	may	not	be	symmetric	in	merge	zones).	

e) For	every	lane,	a	profile	that	points	to	the	adjacent	lane	is	provided,	if	there	is	a	lane;	if	not,	the	dis-
tance	to	the	road	border	or	curb	is	given.	

f) Altitude,	slope	and	banking	profiles	are	given.	
g) Regulatory	profiles	are	given:	speed	limit,	position	of	stop	lines,	regions	to	be	maintained	clear	(where	

vehicle	cannot	stop,	such	as	over	pedestrian	crossings,	railroad	crossings,	etc.),	position	of	pedestrian	
crossings,	yield	or	way	rights,	traffic	signs,	directions	of	lane	traffic,	types	of	lane	markings,	position	of	
traffic	light	etc.	

h) Finally,	the	paths	originating	from	the	position	of	other	vehicles	will	also	be	given	(such	as	observing	
the	road	from	the	other	vehicle’s	point	of	view).	This	is	necessary	for	prediction	of	other	vehicles’	in-
tentions	 (Figure	 7).	 These	paths	may	 also	 be	 received	with	V2V	 communications	 (in	which	 case	 the	
other	vehicle	may	declare	its	indented	lane).	

i) Special	types	of	“obstacles”	may	also	be	introduced.	These	include:	regions	where	the	vehicle	cannot	
drive,	areas	where	the	vehicle	cannot	stand	still	 (the	centre	of	an	 intersection	till	 the	stop	 lines	or	a	
pedestrian	crossing	could	be	modelled	this	way).	

	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	25	of	61	

	

Figure	7:	Knowledge	of	the	paths	available	to	other	road	vehicles	is	required	for	correct	inference	of	their	
intentions	and	prediction	of	their	paths.	

	

3.3.5 Semantic	annotation	

The	system	will	log	high-level	intentions/actions	at	each	time	interval	using	an	appropriate	hierarchical	break-
down	reflecting	the	nature	of	the	perception-action	(PA)	architecture.	The	system	will	also	generate	and	 log	
labels	 during	 operation	 to	 describe	 the	 traffic	 context	 in	 which	 the	 system	 is	 currently	 operating	 (i.e.,	 the	
broad	road	configuration	described	in	perception-action	terms).	A	time	interval	is	here	defined	as	a	temporal	
duration	during	which	the	discrete,	high	level	road	configuration	remains	unchanged	(i.e.	with	no	changes	in	
car	order,	lane	occupancy	etc).	It	is	thus	typically	of	the	order	of	seconds.		

In	general,	intentional	annotation	amounts	to	identification	of	the	most	likely	set	of	legal	groundings	of	hierar-
chical	PA	sequences	satisfying	the	 imposed	 logical	consistency	constraints	 (derived	from	the	Highway	Code).	
Thus,	the	architecture	imposes	a	symbolic/sub-symbolic	divide;	changes	in	metric	relations	that	do	not	consti-
tute	a	discrete	configuration	change	(e.g.	within-lane	changes	in	car	proximity)	are	not	logged	as	annotation.		
The	 'logical	 resolution'	of	PA	predication/annotation	will	 increase	with	proximity	 to	 the	 interaction	 space	of	
the	agent.	

The	system	architecture	will	implicitly	ensure	that	event-logging	protocols	are	consistent	with	the	later	gener-
ation	of	exploratory	learning	instantiations	of	the	PA	architecture	(section	6.4:	Exploratory	Learning)	

	

The	logic	reasoning	component	responsible	for	high-level	semantic	annotation	will	initially	deploy	declarative	
fuzzy	reasoning;	however,	research	is	being	undertaken	to	 implement	this	reasoning	in	a	neural	architecture	
(which	would	sit	at	the	apex	of	the	general	Dreams4Cars	neural	architecture,	‘dorsal	stream’	Figure	1).	The	in-
situ	annotation	system	will	thus	either	derive	from	top-level	predicates	generated	via	declarative	reasoning,	or	
alternatively,	 from	the	output	of	 selected	neurons	 in	an	 integrated	neural	 system.	Configuration	annotation	
will	be	augmented	with	digital-map	annotations.	

3.3.6 Self-monitoring	system	

The	 self-monitoring	 system	 detects	 anomalies	 and	 failures	 in	 the	 vehicle	 dynamics	 and	 related	 sensors	
(WP2.3).	For	this,	the	system	compares	sensor	data	with	predictions	of	internal	models.	Because	of	model	and	
sensor	noise,	the	two	will	never	match	exactly.	Hence,	to	detect	anomalies,	the	question	of	how	much	a	pre-
diction	is	allowed	to	diverge	from	what	is	measured	has	to	be	answered.		

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	26	of	61	

However,	the	threshold	to	classify	a	mismatch	as	an	anomaly	is	not	constant,	but	varies	depending	on	the	cur-
rent	performed	action	and	the	state	of	the	system3.		

To	deal	with	this,	Dreams4Cars	will	extend	the	internal	models	with	the	ability	to	generate	predictions	of	the	
expected	error	between	models	and	sensors.	The	expected	error	(which	will	be	context	and	situation	related)	
will	thus	provide	a	scale	for	defining	the	mismatch	threshold	in	probabilistic	terms.	

Modelling	the	error	between	models	and	sensors	could	be	realized	either	by	Artificial	Neural	Networks	(ANN),	
like	in	previous	work	[12],	or	with	Deep	Neural	Network	(DNN)	architectures.		

When	an	anomaly	 is	detected,	 the	system	may	try	 to	determine	the	kind	of	alteration	or	context	change	or	
failure	 that	 happened.	 For	 example,	 if	 the	 Dreams4Cars	 agent	 has	 forward	 emulators	 for	 both	 dry	 and	 icy	
roads,	and	an	anomaly	has	been	detected	when	using	the	dry	road	emulator,	the	system	might	try	to	deter-
mine	whether	the	other	emulator	is	appropriate.	Hence,	by	testing	all	the	forward	emulators	available	the	sys-
tem	might	discover	the	kind	of	changes	that	occurred	in	the	vehicle	dynamics,	and	such	a	discovery	may	allow	
on-the-fly	adaptation	of	the	inverse	models	used	for	control	 in	the	motor	system	(WP2.3).	As	an	alternative,	
the	system	might	develop	a	context	classifier	on	top	of	the	forward	model	library,	to	be	used	for	selection	of	
the	forward	model	most	suited	to	the	current	context	(for	example	a	slippery	road	model	might	be	selected	by	
default	when	it	is	raining).	

To	sum	up,	two	possible	approaches	could	be	implemented	(mixed	strategies	are	also	possible):	

a) One	classifier	is	used	to	classify	the	current	context.	While	this	requires	the	classifier	to	be	trained	on	
data	of	different	environmental	conditions,	it	directly	operates	on	data	of	environmental	sensors,	such	
as	temperature	and	rain	sensors	(and	maybe	cameras	if	using	a	DNN).	

b) Different	instances	of	forward	models	could	be	trained	for	each	of	the	environment	conditions	and	are	
run	in	parallel	while	the	agent	is	driving.	In	case	of	a	mismatch	of	the	currently	selected	model	the	sys-
tem	could	compare	the	predictions	of	the	other	models	and	might	select	the	one	that	has	the	lowest	
error	and	select	the	corresponding	context.		

Training	of	 the	whole	 self-monitoring	 system	and	 its	models	will	 be	done	 in	 the	 training	phase	 in	 the	 cloud	
simulation	after	the	forward	models	have	been	adapted.			

	

	 	

																																																													
3	Both	sensor	noise	and	model	accuracy	may	be	situation	dependent	(e.g.,	a	forward	model	might	be	less	accurate	near	a	
gear	shift	for	a	large	acceleration/deceleration).	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	27	of	61	

4 Cloud	environment	features	and	parametrization	of	scenarios	
This	chapter	deals	with	the	cloud	simulation	environment,	implemented	in	the	OpenDS	driving	simulator.	This	
is	the	“dream”	state,	in	which	a	copy	of	the	agent	drives	in	a	virtual	world	in	situations	that	recombine	(effi-
ciently)	 the	salient	cases	annotated	 in	the	vehicle	environment.	Optimization	of	 the	agent	sensorimotor	sys-
tem	and	discovery	of	new	actions	takes	place	here.	

The	proposed	open-source	driving	simulation	environment,	OpenDS,	has	continuously	been	developed	by	DFKI	
and	funded	by	the	EU	in	various	projects	since	2012.	The	development	has	been	initiated	in	order	to	provide	
an	evaluation	 tool	 for	automotive	user	 interfaces,	as	 full-fledged	driving	 simulation	software	 is	high	 in	price	
and	low	cost	simulators	often	lack	of	extensibility.	Thus,	the	primary	goal	of	this	cross-platform	implementa-
tion	was	to	provide	a	basic	visual	driving	simulation	toolkit	to	the	research	community	at	 little	cost.	Binaries	
and	source	code	of	the	latest	release	(v4.5)	can	be	downloaded	from	the	official	website	www.opends.eu	free	
of	charge.	Up	to	the	present	day,	the	number	of	users	has	grown	to	more	than	4,000	where	most	of	them	are	
affiliated	to	academia	or	industry.	

The	software	has	been	implemented	entirely	in	Java	and	is	based	on	the	jMonkeyEngine4	(jME)	which	has	be-
come	popular	 in	Java	game	development.	 jME	provides	a	high-performance	scene	graph	based	graphics	API,	
an	OpenGL	supported	renderer	(Lightweight	Java	Game	Library)	and	the	Bullet	physics	library	which	is	in	use	
by	 top	 industry	 developers.	 Bullet	 is	 a	 multi-threaded	 physics	 engine	 which	 allows	mesh-accurate	 collision	
shapes	and	enables	the	application	of	forces	such	as	acceleration,	friction,	torque,	gravity	and	centrifugal	forc-
es	during	 simulation.	The	 support	of	 several	 common	model	 formats	allows	 loading	almost	any	3D	environ-
ment.	 Further	 features	 of	 the	 rendering	 system	 are	 support	 of	 different	 lighting	 options	 (per-pixel	 lighting,	
multi-pass	 lighting,	 Phong	 lighting,	 tangent	 shading,	 and	 reflection),	 texturing	 (multi-texturing	 through	
shaders),	and	the	capability	to	model	special	effects	such	as	smoke,	fire,	rain,	snow	etc.	Supported	post	pro-
cessing	 and	 2D	 filter	 effects	 are	 reflective	 water,	 shadow	 mapping,	 high	 dynamic	 range	 rendering,	 screen	
space	ambient	occlusion,	light	scattering,	fog,	and	depth	of	field	blur.	Nifty	GUI	integration	enables	an	easy-to-
use	toolkit	for	designing	platform	independent	graphical	user	interfaces	within	the	rendering	frame,	which	is	
used	for	menus	and	message	boxes	during	simulation.	Further	features	of	the	game	engine	are	basic	multime-
dia	(image,	audio,	video,	etc.)	and	game	controller	(e.g.	steering	wheel)	support.	

Since	the	very	first	version	of	OpenDS,	the	driving	simulation	has	been	improved	and	extended	iteratively	for	
more	than	five	years.	The	requirements	of	the	funding	projects	 influenced	the	road	map	and	pushed	certain	
developments	such	that	the	software	is	able	to	match	up	to	products	of	the	commercial	market.	In	contrast	to	
commercial	simulators,	OpenDS	benefits	from	the	open-source	idea	and	gained	from	contributions	of	its	users	
worldwide.	Today,	the	software	provides	a	comprehensive	extensible	toolkit	including	basic	driving	simulator	
functionality	 (e.g.	 traffic,	 traffic	 lights,	weather	 effects,	 engine	 and	 transmission	 simulation,	 etc.)	 as	well	 as	
specific	functionality	(e.g.	multi-screen	video	output,	Oculus	Rift	support,	and	interfaces	for	connecting	exter-
nal	data	consumers,	traffic	simulators,	multi-driver	environments,	eye	tracker	hardware,	professional	steering	
wheels,	authentic	car	environments	 (CAN	bus),	and	motion	platforms)	and	a	selection	of	validated	ready-to-
use	driving	tasks	[13].	

The	simulation	environment	is	capable	to	load	road	network	description	files	(XML	format)	which	contain	an	
exact	description	of	 the	 static	 scenario	 including	 roads,	 signs,	 traffic	 lights,	buildings,	 and	vegetation;	of	 the	
dynamic	 scenario	 (e.g.	 vehicles,	 pedestrians,	 obstacles,	 weather	 conditions	 etc.);	 and	 a	 list	 of	 pre-defined	
events	that	might	occur	during	simulation.	By	the	help	of	these	files,	connected	input	devices	(steering	wheel,	
CAN	bus	controller,	etc.)	and	output	devices	(screen	output,	motion	seat,	force	feedback,	etc.)	can	be	config-
ured,	communication	to	external	applications	can	be	managed,	and	what	data	to	be	logged	can	be	defined	(c.f.	
Figure	8).	Log	data	can	be	stored	in	text	files	and	data	base	tables.	Furthermore,	the	integrated	Jasper	Report	
module	allows	creating	templates	for	visual	representation	(graphs,	charts,	etc.)	of	this	data	which	can	finally	
be	exported	to	PDF	format.	In	addition	to	video	recording	of	the	simulation,	vehicle	trajectories	can	be	record-
ed	for	any	later	analysis	of	the	driven	pathway	at	any	point	of	the	simulation.	At	this	point,	the	recorded	tra-

																																																													
4		http://www.jmonkeyengine.org	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	28	of	61	

jectory	can	be	compared	to	a	pre-defined	normative	trajectory	in	order	to	compute	the	deviation,	which	can	
be	considered	as	a	measure	of	driving	performance.		

	

	

Figure	8:	Road	Network	Description	files	used	to	set	up	the	scenario,	input	devices,	external	communica-
tion,	and	logging.		

For	the	scope	of	Dreams4Cars,	there	may	be	features	mentioned	before	which	will	not	be	required;	however,	
other	features	which	are	not	available	yet	need	to	be	implemented.	Thus,	we	investigate	in	the	following	(in	
order	of	 priority)	 in	more	detail	 the	 requirements	 and	 required	extensions	of	 the	 cloud	 simulation	environ-
ment	 concerning	 vehicle	 dynamics	model,	 environmental	 parameters,	 agent	 interfacing,	 generation	 of	 road	
networks,	vehicles	and	pedestrian	modelling,	simulation	of	sensors,	and	simulation	of	vehicle-to-x	communica-
tion.	

4.1 Vehicle	Dynamics	Model		
The	current	version	of	OpenDS	uses	the	basic	VehicleControl	class	of	the	jMonkeyEngine	framework,	which	in	
turn	uses	the	btRaycastVehicle	model	of	the	Bullet	physics	library.	The	vehicle	is	modelled	with	the	dynamics	
of	one	single	rigid	body	and	allows	setting	the	mass,	inertia	tensor	and	position	of	centre	of	mass	of	the	chas-
sis.	Wheels	and	suspensions	are	not	modelled	in	details	as	separate	bodies.	Instead,	wheel	forces	are	comput-
ed	by	means	of	four	vertical	rays.	The	ray's	intersection	point	with	the	terrain	is	used	to	calculate	the	suspen-
sion	length,	and	hence	the	suspension	force	which	is	applied	to	the	chassis	[14].	The	suspension	accounts	for	
the	spring	and	damping	forces.	There	are	two	coefficients	for	damping:	one	for	spring	compression,	and	one	
for	spring	relaxation	(in	a	real	vehicle,	the	compression	damping	is	set	much	lower	than	the	relaxation	damp-
ing,	which	means,	when	the	vehicle	hits	a	bump,	it	will	not	be	transmitted	to	the	chassis,	resulting	in	a	smooth	
ride).	In	addition	to	these	suspension	settings,	the	model	allows	setting	a	maximum	suspension	travel	as	well	
as	the	exact	axle	and	wheel	positions.		

The	friction	model	in	Bullet	is	implemented	as	separate	forces	applied	to	each	wheel	where	the	ray	contacts	
the	ground.	For	each	wheel	a	constraint	equation	is	used.	Expressing	the	friction	as	constraints	allows	the	con-
straint	solver	of	the	physics	engine	to	compute	the	friction	force	on	each	wheel.	In	more	detail,	this	friction	
constraint	consists	of	an	axis	to	act	along	(lateral	wheel	slip),	a	target	slip	velocity	(which	is	zero)	and	a	maxi-
mum	force	according	to	Coulomb's	friction	law	[14]:	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	29	of	61	

F	=	μ	N,				where	F:	maximum	friction	force,	μ:	friction	coefficient,	N:	normal	force	

	

This	model	for	tire	forces	is	very	simple	if	compared	to	tire	models	in	the	literature,	as	it	does	not	allow	to	ac-
curately	model	 tire	 sideslip	 phenomena	 (see	 improvements	 below).	 A	 further	 disadvantage	 of	 the	 ray	 cast	
model	is	that	rays	are	infinitely	thin	and	show	incorrect	behaviour	on	some	kind	of	surfaces	compared	to	a	to-
rus-shaped	tyre	model	(however	this	limitation	is	of	secondary	importance	compare	to	the	first).	While	a	ray	
cast	wheel	projects	through	a	crack	in	the	ground	geometry,	a	convex	cast	wheel	would	roll	over	cracks	cor-
rectly	(c.f.	Figure	9).	

A	 further	 restriction	of	 the	current	vehicle	 implementation	 is	 that	aerodynamic	 forces	are	not	 implemented	
(which	might	play	some	role	at	high	speed).	

	

Figure	9:	Ray	cast	wheel	vs.	convex	cast	wheel	when	hitting	a	crack	in	the	road	

Improvements.	As	 the	vehicle	dynamics	model	plays	an	 important	 role	 in	 the	project,	we	will	 investigate	 to	
what	extent	the	existing	wheel/tire	model	can	be	improved	within	the	integration	work	package.	At	least	we	
need	to	ensure	that	understeering	and	oversteering	are	modelled	properly,	which	means	that	suitable	models	
for	tire	lateral	and	longitudinal	forces	should	be	implemented.	Changes	at	this	level	result	in	adaptations	of	the	
physics	engine,	the	game	engine	and	the	simulator	source	code.	

4.2 Environmental	Parameters		
Environmental	parameters	denote	all	parameters	that	can	influence	the	behaviour	of	the	vehicle	from	the	en-
vironment	 during	 the	 simulation.	 These	 parameters	 comprise:	 surface	 type	 (asphalt,	 sand,	 ice,	 snow,	 etc.),	
weather	conditions	(fog,	rain,	snow,	etc.),	and	light	conditions	(sunrise,	dark,	bright,	etc.).	Within	the	scope	of	
this	project,	there	is	no	human-simulator	interaction	and,	therefore,	there	is	no	need	to	simulate	environmen-
tal	parameters	that	only	have	impact	on	the	visual	experience	(e.g.	falling	rain	drops,	sun	light	from	the	front,	
etc.).	Instead,	we	focus	on	parameters	influencing	the	physical	behaviour	or	any	other	signal	perceived	by	the	
artificial	co-driver.	For	example,	friction	effects	between	wheels	and	road	surface,	or	sensor	effects	that	typi-
cally	occur	at	certain	light	or	weather	conditions.	

Improvements.	 In	order	 to	simulate	different	surface	 features,	 first	 the	simulation	needs	 the	 information	of	
what	 specific	 ‘material’	 is	 present	 at	 each	wheel	 contact	 point.	 Since	 the	 current	 implementation	 does	 not	
provide	comprehensive	capabilities	to	deal	with	semantic	information	about	the	environment,	this	will	consti-
tute	an	important	extension	of	the	simulation	software.	In	the	current	state,	the	driving	scenario	is	generated	
by	 loading	various	3D-models	of	environmental	objects	and	arranging	them	in	the	scene.	The	simulator	only	
has	restricted	 information	about	scene	objects	and	cannot	differentiate	between	e.g.	 road	and	off-road	sur-
faces.	A	basic	solution	to	simulate	surfaces	with	different	adherence	has	been	implemented	in	the	form	of	a	
grip	table	which	allows	assigning	grip	coefficients	to	each	scene	object	at	mesh-level,	i.e.	for	each	mesh	a	spe-
cific	grip	value	can	be	looked	up	in	that	table	and	be	used	for	the	wheel	located	at	the	given	mesh.	Figure	10	
depicts	the	visual	representation	of	such	a	table,	where	road,	pavement,	and	off-road	meshes	have	been	as-
signed	with	a	very	high,	high,	and	medium	grip	value,	respectively.		

If	a	 local	discontinuity	of	 the	grip	 is	caused	by	weather	effects	 (e.g.	wet	road	section	caused	by	rain),	a	syn-
chronisation	of	the	physics	simulation	with	the	visual	appearance	(e.g.	raindrops,	puddles,	etc.)	might	be	con-

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	30	of	61	

sidered	to	increase	realism	for	the	visual	representation	of	the	scene.	However,	as	the	co-driver	does	not	de-
rive	the	information	(at	the	moment)	from	the	image	of	the	front	camera	visual	extensions	have	low	priority.		

					 	

Figure	10:	Manual	annotation	of	friction	slip	at	mesh-level	

Environmental	parameters	that	 influence	sensors.	 In	addition	to	environmental	parameters	which	 influence	
the	physical	 behaviour	of	 a	 simulated	 vehicle,	 further	parameters	 that	 could	potentially	disturb	 the	 sensors	
(radar,	ultrasound,	LIDAR,	etc.)	of	a	sensor-equipped	vehicle	need	to	be	considered	in	the	simulation	as	well.	
Typical	environmental	effects	that	can	reduce	the	quality	of	the	sensor	data	and	need	to	be	implemented	are	
fog,	rain/snow,	and	adverse	light	conditions.	As	mentioned	above,	this	does	not	include	the	visual	implemen-
tation	 (which	 is	 already	 available	 for	 fog,	 raining,	 and	 snowing).	 However,	 it	 must	 be	 recalled	 that	
Dreams4Cars	is	not	intended	to	develop	sensor	technologies;	hence	the	influence	of	environmental	conditions	
on	sensors	has	to	be	considered	only	as	for	what	concern	the	perception	effects	(not	necessarily	all	the	details	
that	might	be	need	for	optimizing	sensor	designs).	

4.3 Interfaces	
OpenDS	provides	an	implementation	of	a	TCP	server	which	can	connect	with	external	clients.	Once	a	client	is	
connected,	it	can	subscribe	to	be	updated	about	any	of	the	following	car	parameters:	accelerator	pedal	state,	
brake	pedal	state,	steering	wheel	angle,	headlight	state,	selected	gear,	rpm,	fuel	consumption,	latitude,	longi-
tude,	altitude,	heading,	and	speed.	As	the	simulation	has	full	access	to	every	parameter	of	each	scene	object,	
the	 interface	can	simply	be	extended	by	any	parameter	allowing	 it	to	be	consumed	by	the	client.	A	compre-
hensive	list	of	parameters	(including	vehicle	data,	sensor	data,	environmental	data,	traffic	data,	infrastructure	
data,	control	instructions	(remote	setup	of	scenario))	needs	to	be	derived	from	the	definitions	of	section	3.3.3.	
Alternatively,	the	server	can	also	support	UDP	connections,	 if	fast	data	transfer	has	higher	priority	than	data	
loss.	

The	CarMaker	environment	(Figure	1)	can	be	replaced	to	the	OpenDS	simulation	environment	for	the	Quality	
Assurance	phase	using	the	same	interface.		

4.4 Generation	of	Road	Networks	
The	generation	of	road	networks	can	be	considered	as	a	two-level	task:	in	the	first	place,	we	need	to	generate	
a	3D-model	consisting	of	polygons	providing	the	ground	to	drive	on;	 in	the	second	place,	we	need	to	enrich	
that	terrain	information	(low-level	data)	with	semantic	information	(high-level	data)	representing	lane	configu-
ration,	traffic	pathways,	traffic	lights,	etc.	Adopting	a	road	description	format	as	close	as	possible	to	emerging	
standards	(such	as	ADASIS)	is	recommended	for	modelling	the	road	network.	

Regarding	the	first	job,	there	are	plenty	of	3D	modelling	tools	available	for	static	scenery	generation;	however,	
in	Dreams4Cars	we	need	to	explore	methodologies	to	dynamically	generate	rule-based	scenes	(driven	by	vari-
ous	dreaming	mechanisms).		

While	 usual	 driving	 simulation	 use-cases	 are	 built	 on	 a	 fixed	 set	 of	 re-usable	 road	 networks,	 simulation	 in	
Dreams4Cars	ideally	consumes	a	large	amount	of	slightly	different	scenarios	generated	on-the-fly.		

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	31	of	61	

The	way	to	generate	scenarios	for	OpenDS	may	be	based	on	a)	manual	modelling	with	a	3D	modelling	editor	
or	b)	based	on	 importing	real-world	data	from	OpenStreetMap5	(e.g.	OSM2World6)	or	c)	based	on	road	net-
work	generation	with	a	specific	graphical	editor	(e.g.	Esri	CityEngine7).	Manual	modelling	 is	the	most	flexible	
approach;	however,	since	it	requires	lots	of	human	resources	and	cannot	be	automatized,	it	will	not	be	a	fea-
sible	 solution	 in	 this	project.	 Importing	 scenarios	 from	 real-world	data	 is	 a	 rather	 convenient	way	 to	 collect	
large	amounts	of	road	configurations:	it	may	be	a	viable	solution	but	it	is	not	a	genuine	dreaming	mechanism	
because	it	will	not	generate	any	conceivable	network.	The	third	approach,	generic	scenario	generation,	is	the	
most	promising	one,	as	it	uses	tools	that	are	able	to	turn	road	network	descriptions	into	3D	models.	Usually,	
road	network	modelling	editors	comprise	a	graphical	user	 interface	and	require	some	manual	 input.	For	 the	
scope	of	Dreams4Cars,	however,	 the	design	of	 the	 road	network	will	be	proposed	automatically	 in	order	 to	
create	salient	situations	from	previous	situations	experienced	in	real	driving.		

Editors	with	good	prospects	that	have	been	considered	are	Esri	CityEngine	and	the	new	Scenario	Editor	of	IPG	
CarMaker	6.	The	latter	one	is	rather	attractive,	because	CarMaker	will	be	used	for	quality	assurance.	However,	
a	close	look	at	the	scenario	description	format	used	by	CarMaker,	which	is	named	ROAD5,	revealed	that	the	
format	lacks	of	a	documented	specification.	Furthermore,	the	XML	files	of	this	format	contain	paths	to	internal	
CarMaker	resources	that	are	only	available	as	binary	files.	In	addition,	to	our	knowledge	there	is	no	standardi-
zation	activity	promoting	ROAD5.		

Conversely,	CityEngine	supports	 several	 common	3D	model	 formats	and	allows	 for	 rule-based	 road	network	
generation.	The	computer	is	given	a	code-based	procedure	which	represents	a	series	of	geometric	modelling	
commands	which	then	will	be	executed.	Instead	of	the	classical	intervention	of	the	user,	who	manually	inter-
acts	with	the	system,	the	task	is	described	abstractly,	in	a	rule	file	[15].	However,	it	still	remains	to	be	investi-
gated	whether	CityEngine	can	be	driven	from	a	road	network	description	of	the	co-driver	agent	or	vice	versa.		

Alternatively,	the	non-commercial	toolkit	OSM2World	might	be	worth	to	be	considered.	This	tool	is	capable	to	
convert	road	networks	described	in	OSM	format	into	3D	models.	This	format	is	based	on	XML	and	contains	ba-
sically	nodes	(with	latitude	and	longitude)	and	ways	that	connect	several	nodes.	Furthermore,	the	format	al-
lows	annotating	various	tags	to	single	nodes	and	ways	(e.g.	road	width,	number	of	lanes,	etc.).		

To	sum	up,	if	we	succeed	to	describe	the	road	layout	to	be	created	as	a	list	of	geographic	positions	(latitude,	
longitude,	altitude,	which	may	in	principle	be	derived	for	the	ADASIS	emerging	standard),	an	OSM	file	could	be	
generated	which	in	turn	could	be	converted	to	a	driving	scenario.	Issues	of	this	solution	may	be	incorrect	rep-
resentation	of	lane	markings,	inaccurate	transitions	from	n	to	n+1	lanes,	and	imprecise	surface	features.	

OpenDS	provides	several	tools	to	add	additional	objects	to	the	scenario,	to	define	traffic	pathways,	and	to	as-
sign	a	mapping	of	authentic	GPS-coordinates.	Usually,	after	a	3D	model	has	been	created,	the	Object	Locator	is	
used	to	add	road	signs,	trees,	traffic	lights,	etc.	to	the	scenario.	These	objects	will	not	be	hardwired	to	the	3D	
model,	but	rather	the	model	and	objects	will	be	referenced	in	a	road	network	description	file	which	can	be	ex-
ecuted	by	the	simulator.	Using	several	road	network	description	files	allows	re-using	the	same	model	with	dif-
ferent	road	sign	configurations.		

Improvements.	Currently,	the	road	network	description	format	in	use	is	a	custom	implementation	considering	
the	minimum	set	of	supported	features.	In	order	to	provide	more	detailed	semantic	information	to	the	simula-
tion	environment,	 the	 interface	needs	 to	be	extended	or	 replaced	by	an	open	standard	 (e.g.	ADASIS,	Open-
DRIVE,	RoadXML,	etc.).	Furthermore,	the	Object	Locator,	which	uses	a	graphical	user	interface	to	place	objects	
in	the	scene,	needs	to	be	adjusted	in	order	to	support	automatized	scenario	generation,	i.e.	objects	need	to	be	
placed	without	human	interaction	according	to	the	information	collected	by	the	agent	in	the	wake	state.	Anal-
ogously,	dynamic	objects	and	the	way	they	are	intended	to	move	by	the	dreaming	mechanism	need	to	be	in-
cluded	to	the	road	network	description	in	forms	of	initial	configuration,	trajectory,	and	speed	profile.	Further-

																																																													
5		http://www.openstreetmap.org	
6		http://osm2world.org	
7	http://www.esri.com/software/cityengine	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	32	of	61	

more,	 semantic	 information	 like	 lane	 configuration	 (intersections,	 neighbours,	 n-to-n+1-transitions),	 traffic	
light	and	speed	limit	affected	lanes,	and	relative	vehicle	positions	need	to	be	implemented.			

4.5 Vehicle	and	Pedestrian	Modelling	
As	a	specific	kind	of	semantic	information,	traffic	could	be	added	to	a	scenario,	i.e.	computer-controlled	vehi-
cles	and	pedestrians.	Describing	trajectories	of	traffic	objects	relative	to	the	simulation	time	frame	is	a	highly	
relevant	simulation	feature	required	in	Dreams4Cars	in	order	to	exactly	recreate	situations	experienced	in	the	
wake	state	and	variations	thereof.	

For	this	purpose,	OpenDS	provides	basic	annotation	capabilities	as	contained	in	the	road	network	description	
standard	ADASIS:	links	and	nodes.	A	plain	3D	road	model	can	be	annotated	with	a	collection	of	directional	links	
(also	called	‘segments’)	and	nodes	(‘way	points’)	that	define	connectivity	between	links.	Primarily,	a	node	con-
sists	of	a	location	in	the	3D	coordinate	space,	however,	further	semantic	information	like	light	states	(turn	sig-
nal,	brake	light,	head	light),	close-by	traffic	lights,	and	whether	a	node	requires	a	full	stop	or	even	waiting	time	
(e.g.	stop	sign)	can	be	attached	to	each	node	and	will	be	applied	to	approaching	vehicles	and	pedestrians	(if	
applicable).	

A	traffic	object	can	be	assigned	to	one	of	the	way	points	where	it	will	start	from	at	the	beginning	of	the	simula-
tion.	It	can	move	from	one	way	point	to	another	if	both	are	connected	by	a	unidirectional	segment	originating	
from	the	one-way	point	and	targeting	the	other	way	point.	In	order	to	allow	a	vehicle	to	return	to	the	previous	
way	point	a	separate	segment	pointing	in	the	opposite	direction	would	be	required.	As	soon	as	a	traffic	object	
reaches	the	end	of	a	segment	(i.e.	approaches	to	a	node),	the	subsequent	segment	will	be	chosen	randomly	
from	all	outgoing	segments	of	the	node	according	to	their	probability	values.	Outgoing	segments	of	each	node	
are	annotated	with	individual	probability	values	which	sum	up	to	100%:	the	higher	the	individual	percentage	
of	a	segment,	the	higher	the	probability	that	it	will	be	followed	by	a	vehicle.	Furthermore,	traffic	objects	can	
be	equipped	with	individual	lists	of	preferred	segments,	which	will	overwrite	the	default	selection	according	to	
probabilities.	By	the	help	of	this	concept,	 individual	trajectories	of	traffic	objects	can	be	defined.	Besides	the	
probability	value,	each	segment	can	have	further	properties	like:	maximum	speed	a	traffic	object	is	allowed	to	
drive/walk	at	when	following	this	segment,	a	pair	of	neighbour	segments	(left/right)	used	for	overtaking	pro-
cedures	on	multi-lane	 roads,	 a	 list	of	 segments	having	higher	priority	 than	 this	 in	 case	of	 intersections,	 and	
jump	markers.	A	jump	marker	indicates	whether	a	segment	is	an	ordinary	segment	that	can	be	followed	by	any	
vehicle/pedestrian	or	if	this	segment	is	used	to	connect	two	distant	nodes	making	the	vehicle	disappear	at	the	
originating	node	and	instantly	appearing	again	at	the	target	node.	Jump	segments	can	be	used	to	avoid	dead-
locks,	e.g.	prevent	randomly	moving	vehicles	from	getting	caught	in	a	dead-end	road.		

In	order	to	enable	proper	vehicle	and	pedestrian	simulation,	at	least	two	independent	networks	must	be	cre-
ated	–	one	for	vehicles	and	one	for	pedestrians.	Connecting	a	node	from	the	vehicle	network	with	a	node	from	
the	pedestrian	network	would	result	in	cars	driving	on	the	pavement	and	pedestrians	walking	on	the	road,	as	
traffic	objects	can	freely	move	along	connected	segments.	Furthermore,	vehicles	automatically	stop	in	front	of	
red	traffic	lights	and	keep	a	minimum	safety	distance	to	all	other	traffic.	

Improvements.	Figure	11	depicts	a	graphical	network	generator	application	which	has	been	developed	for	fast	
and	efficient	manual	network	creation	based	on	a	top-down	view.		

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	33	of	61	

				 	
Figure	11:	Network	generator:	way	point	editing	(left)	and	segment	editing	(right)	

This	graphical	editor	allows	loading	empty	scenes	as	well	as	scenes	containing	complex	road	networks	consist-
ing	of	many	way	points	and	segments.	The	user	can	add,	change,	and	remove	way	points	and	sections	as	well	
as	set	up	 traffic	objects	 (type	of	car/pedestrian,	mass,	maximum	speed,	acceleration/brake	 force,	 traffic	ob-
servation	 distance,	 etc.),	 define	 their	 initial	 positions,	 assign	 neighbour	 and	 priority	 segments,	 and	 store	 all	
changes	to	a	format	that	could	be	loaded	by	the	simulator.	Based	on	the	functionality	of	this	editor,	an	algo-
rithm	to	place	way	points	and	connect	them	by	segments	in	a	reasonable	way	according	to	the	road	layout	de-
signed	by	the	dreaming	mechanism	is	required.	For	the	scope	of	Dreams4Cars,	the	road	network	description	
(c.f.	4.4)	must	be	extended	by	traffic	 information	 in	order	to	create	appropriate	scenarios,	on	the	one	hand,	
and	appropriate	traffic	networks,	on	the	other	hand.	A	feasible	solution	could	be	adopting	ADASIS,	OpenDRIVE	
or	RoadXML.	

4.6 Simulation	of	Sensors		
The	perception	system	of	the	co-driver	may	use	short	range	and	long	range	radar,	cameras,	LIDAR,	and	ultra-
sound	sensors	(which	exist	in	the	test	vehicles).	In	the	simulation	environment,	the	same	sensors	must	be	sim-
ulated.	Data	for	all	scene	objects	like	velocities,	accelerations	heading	angles	and	any	other	state	variables	are	
available	during	runtime	of	the	simulation.	Hence	the	high-level	output	of	sensors	(such	as	directions	and	dis-
tances	and	bounding	boxes	of	objects)	can	be	easily	computed	replacing	the	high-level	output	of	the	real	sen-
sors	when	the	co-driver	operates	in	the	simulator.	Conversely,	raw	sensor	data	(for	example	LIDAR	scans)	re-
quires	models	 of	 the	 sensors	 and	may	not	 be	 available	or	may	be	 available	 in	 simplified	ways8	 (e.g.,	 as	 ray	
traces	for	the	LIDAR,	see	below).	

On	the	other	hand,	providing	camera	images	is	a	basic	feature	of	each	visual	driving	simulator	and	can	natural-
ly	be	provided	from	every	position	–either	moving	or	static–	with	almost	any	resolution.	Hence,	simulation	of	
cameras	is	available	as	raw	pictures.	However,	if	a	cloud	service	were	to	be	set	up	(which	is	a	possible	follow	
up	product	of	the	project),	providing	camera	images	requires	the	presence	of	a	GPU,	which	is	not	part	of	the	
basic	package	offered	by	most	cloud-providers,	and	is	limited	by	the	capabilities	of	the	network	connection	in	
case	the	image	data	has	to	be	streamed	to	a	remote	server.	

Concerning	the	simulation	of	a	Global	Positioning	System	(GPS),	OpenDS	provides	capabilities	to	convert	mod-
el	coordinates	to	real-world	coordinates	and	vice	versa,	allowing	the	co-driver	to	request	authentic	GPS	sensor	
data	(latitude,	longitude,	altitude,	heading)	from	beforehand	geo-referenced	scenarios.	

Improvements.	Concerning	the	simulation	of	sensors	at	raw	data	level,	in	order	to	simulate	radar,	LIDAR,	and	
ultrasound	sensors,	different	ray	emitters	have	to	be	attached	to	the	virtual	vehicle	where	they	cast	rays	in	the	
respective	directions	to	scan	the	environment.	Scanning	rate,	resolution,	and	range	need	to	be	adjusted	to	the	

																																																													
8	Dreams4Cars	is	not	intended,	in	the	current	project,	to	be	a	testbed	for	sensors	(albeit	it	might	serve	this	function	if	ac-
curate	models	of	sensors	are	integrated).	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	34	of	61	

typical	capacity	of	the	respective	sensor	and	realistic	 failure	and	distortion	of	the	sensor	data	(e.g.	 fog,	rain-
ing/snowing,	and	adverse	light	conditions)	need	to	be	modelled	adequately.		

	

			 	

Figure	12:	Mockup	top-down	view	(left)	of	the	current	scene	(right).	

Furthermore,	rendering	techniques	of	the	simulator	could	be	used	to	capture	a	top-down	view	of	the	scene	at	
the	current	position	of	the	vehicle	in	order	to	create	additional	image-based	sensor	data	or	to	monitor	traffic	
in	the	vicinity.	Figure	12	depicts	how	the	monochrome	top-down	view	of	a	typical	traffic	scene	could	look	like.	

4.7 Simulation	of	V2X	
In	addition	to	sensor	data,	vehicle-to-x	(V2X)	communication	will	provide	an	important	source	of	information	
to	the	co-driver	agent.	For	the	scope	of	Dreams4Cars,	test	sites	and	vehicles	will	be	equipped	with	V2X	hard-
ware	 allowing	 vehicular	 communication	which	 is	 restricted	 to	 infrastructure	 (V2I)	 and	 other	 vehicles	 (V2V).	
Communication	involving	pedestrians	or	other	devices	is	out	of	the	scope	of	the	project.	Due	to	interchangea-
bility	of	the	vehicle	and	simulation	environment,	the	cloud	environment	needs	to	mimic	the	communication	of	
the	vehicle	environment.	

As	the	driving	simulator	has	full	access	to	all	scenario	objects	during	the	simulation,	opponent	vehicle	parame-
ters	(position,	speed,	planned	route,	brake	status,	etc.)	as	well	as	infrastructure	parameters	(e.g.	in	case	of	a	
traffic	light:	position,	affected	lanes,	light	state,	remaining	time	till	next	light	change,	etc.)	can	be	provided	to	
the	co-driver	agent.	

Improvements.	Suitable	protocols	for	communication	must	be	agreed	on	and	implemented	at	simulator	end.	
In	 the	 context	 of	 the	AdaptIVe	 project,	 various	 protocols	 have	 been	 evaluated	 such	 as	 CAM	 (vehicle	 status	
broadcast),	MAP	(topological	definition	of	lanes),	and	SPaT	(signal	phase	and	timing	of	traffic	lights).	Available	
semantic	 information	needs	 to	be	 translated	 to	 the	message	 format	of	 these	protocols.	 Furthermore,	 filters	
have	to	be	applied	in	order	to	limit	data	reception	to	vehicles/infrastructure	in	the	vicinity	of	the	co-driver.	A	
typical	ad-hoc	network	for	V2X	communication	can	be	simulated	by	“disconnecting”	senders	that	exceed	the	
characteristic	operating	range	of	wireless	LAN.		

	

	 	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	35	of	61	

5 Vehicle	environments	and	test	sites	

5.1 Test	sites	
5.1.1 Test	sites	in	Germany:	

DFKI	contacted	different	companies	and	intuitions	 in	order	to	organize	the	most	appropriate	test	track.	 	The	
selected	test	sites	are	following:		

• Traffic	Training	Centre	Bremen	(Verkehrübungsplatz	Bremen)9	
• ADAC	Training	Centre	Bremen10	
• Aldenhoven	test	centre11		

	

5.1.2 Traffic	training	centre	Bremen	

	

	

Figure	13:	Test	sites	in	Bremen		
(left:	traffic	training	centre	Bremen,	right:	ADAC	training	centre)		

	

The	traffic	 training	centre	 in	Bremen	(see	 in	Figure	13	–	blue	bordered	area)	serves	as	 test	environment	 for	
people,	who	basically	want	to	improve	their	driving	skill	in	a	realistic	environment.	For	this	purpose,	the	train-

																																																													
9		http://www.verkehrsuebungsplatz-bremen.de/	
10	http://adac-weser-ems.de/fahrsicherheits-training/	
11		http://www.atc-aldenhoven.de/en/	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	36	of	61	

ing	centre	is	a	1.200	m	long	road	built	with	various	surfaces	(e.g.	asphalt	and	cobbles	surface,	tram	rails,	hill),	
including	31	parking	lots	as	well	as	basic	traffic	and	environmental	objects	(e.g.	road	sings,	traffic	lamps,	trees	
etc.).	There	are	also	different	cross	roads	(intersections	–	roundabout)	to	practice	different	realistic	drive	situa-
tions	(e.g.	right	of	way	or	other	traffic	rules)	with	other	road	users.	The	road	lanes	and	other	road	markers	en-
able	different	training	scenarios	for	the	agent	with	up	to	30	km/h	speed	limit	(see	in	Figure	14).	This	test	site	is	
to	be	rented	for	up	to	5	hours	per	day	according	to	the	test	plan.		

	

	 	

	 	 	

	 	 	

Figure	14:	Pictures	from	traffic	training	centre	in	Bremen	

	

5.1.3 ADAC	Training	Centre	Bremen	

Another	test	facility	located	in	Bremen	is	the	ADAC	training	centre	(see	in	Figure	13	–	yellow	bordered	area),	
which	is	used	for	the	purposes	of	gaining	expert-level	driving	skills,	for	non-professional	and	professional	driv-
ers.		The	test	centre	has	different	test	and	training	areas,	which	will	be	used	to	have	reproducible	controlled	
anomaly	case	for	the	training	and	evolution	of	the	agent.	A	steel	sliding	surface	(20	x	60	m)	and	circular	path	
(Ø	53	m)	serve	different	realistic	scenarios	to	realise	alteration/context	change/failure	of	vehicle	components	
as	well	as	other	anomalies.	This	test	site	will	be	rented	per	day	according	to	the	test	plan.	

5.1.4 Aldenhoven	test	centre	

The	Aldenhoven	test	centre	(ATC)	(see	in	Figure	15)	is	an	interdisciplinary	test	field,	used	by	car	manufacturers	
and	suppliers	for	development	and	validation	of	vehicles,	vehicle	components	or	vehicle	functions.	The	eight	
track	elements	(oval	circuit,	rough	road,	vehicle	dynamics	area,	intersection,	braking	test	track,	handling	track,	
hill	section	and	highway)	provide	different	scenarios	for	tests.	The	intersection	part	of	this	test	area	is	under	
construction	for	testing	the	autonomous	driving	skill	of	a	vehicle	in	a	controlled,	realistic,	urban	environment.	
On	this	intersection,	smart	infrastructures	and	V2X	communication	with	environmental	objects	will	be	availa-
ble.		It	is	planned	to	use	this	track	for	reproducible	driving	scenarios	when	it	will	be	operative	(late	2018).			

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	37	of	61	

	

	

Figure	15:	Aldenhoven	Testing	Centre	track	elements	

	

5.1.5 Test	site	in	Italy	

CRF	will	perform	tests	for	autonomous	driving	in	the	test	track	of	Safety	Centre	located	in	Orbassano,	close	to	
the	CRF	location.	The	test	track	consists	of	a	two	lanes	irregular-ring	road	of	about	1700	m	length.	Some	of	the	
scenarios	addressed	in	the	project	will	be	reproduced	in	this	test	site,	mainly	to	verify	the	level	of	coherence	
between	the	simulation	and	the	demonstrator	vehicle	test	environments.	

	

5.2 Test	vehicles	
5.2.1 Mia	electric	car:	

The	Mia	electric	car	(see	in	Figure	16)	is	an	off-the-shelf	electric	vehicle,	which	is	modified	with	x-by-wire	con-
trol	to	permit	autonomous	driving.	The	technical	specifications	of	this	vehicle	are	summarized	in		

The	customization	involves	four	subsystems,	which	are	throttle,	brake,	steering	and	driving	direction	(i.e.	for-
ward	and	reverse).	These	are	accessible	for	autonomous	driving.	A	Kontron	mobile	embedded	PC	with	an	Intel	
Core	 i7	core	 is	 integrated	on	this	vehicle	as	a	high-level	control	unit.	The	 interfaces	of	the	vehicle,	after	cus-
tomization,	are	listed	in	Table	4.	

For	perception,	different	types	of	sensors	are	integrated,	as	shown	in	Table	5.	

There	are	three	different	physical	communication	bus	types	on	this	vehicle,	which	provide	the	communication	
between	low-level	vehicle	control	and	high-level	control	(CAN),	sensors	(Ethernet,	USB)	and	high-level	control	
unit	visualised	in	Figure	17.	

	

	 	

Figure	16:	Mia	electric	car	and	the	principal	illustration	of	MIA	components.	

	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	38	of	61	

year	of	manufacture:	 2012	

class:	 minivan	

engine:	 electric	motor	24	kW	

max.	speed:	 110	km	

acceleration	(0–50	km/h):	 8,3	s	

turning	radius:	 8,5m			

electric	engine	battery:	 8	kwh	–	LiFePO4	

range:	 ~	60-80	km	

charging	time:	 ca.	3	-	5	hours	(230V-AC,	16A)	

Table	3:	MIA	technical	specifications	

	

Vehicle	information	 Electric	mechanical	interfaces	 low-level	&	high-level	interfaces	

MIA	 Car	 information	 CAN	 bus	
channel	with	IOBU	

steering	 CAN	bus	

brake	 Ethernet	(front	/	rear)	

throttle	 USB		interface	(front	/	rear)		

Table	4:	MIA	available	interfaces	after	customization.	

	

Sensor	type	 IMU	+	GPS		 LIDAR	 Laser	scanner	

Sensor	name	 Xsens	MTi-G-700		 Velodyne	HDL-32	 2xHokuyo	UTM-30LX-EW	

Table	5:	The	external	sensor	setup	of	Mia	electric	vehicle.	

	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	39	of	61	

	

Figure	17:	In-vehicle	networks	for	control	and	sensor	communication.	

	

Currently,	there	are	C++	drivers	in	ROCK	framework12		for	sending	commands	to	the	car	and	receiving	its	status	
back.	The	commands	include:		

• Throttle	
• Steering	angle	
• Brake	
• Drive	mode	(forward,	reverse	or	neutral)	
• Control	mode	(manual,	autonomous	and	neutral)		

The	status	information	of	vehicle	includes:		

• Throttle	position	
• Steering	angle	
• Brake	position	
• Drive	mode	(forward,	reverse	or	neutral)	
• Control	mode	(manual,	autonomous	and	neutral)		
• Emergency	button	state	
• Total	distance	travelled	
• Wheel	absolute	positions	(left	and	right)	
• Raw	average	wheel	speed	
• Filtered	average	wheel	speed	of	front	wheels	
• Vehicle	speed	from	filtered	average	wheel	speed	
• Vehicle	acceleration	from	vehicle	speed			

The	driver	task	communicates	with	the	hardware	via	CAN	bus	(see	 in	Figure	17).	Furthermore,	the	task	con-
verts	the	desired	commands	coming	as	input	in	the	ROCK	ports	to	CAN	messages	and	sends	it	to	the	Vehicle	
Control	Unit	(VCU)	(see	in	Figure	18).	The	latest	status	is	send	back	by	the	VCU,	which	is	read	by	the	driver	and	
written	on	ROCK	output	port	as	status.	In	future,	this	driver	will	be	ported	to	ROS	framework.	

Apart	from	the	driver,	there	is	also	a	basic	controller	for	receiving	the	desired	speeds	(forward	and	turn)	and	
tries	to	maintain	the	commanded	speed	using	the	throttle,	brake	and	steering	commands,	which	are	 in	turn	
sent	to	the	driver.	It	has	a	design	of	a	PID	controller,	where	the	positive	output	values	serve	as	throttle	com-
mand	and	 the	negative	values	 serve	as	brake.	The	 throttle	and	brake	commands	are	also	scaled	differently.	
The	 controller	works	 satisfactory	 for	 car	 velocities	below	30km/h.	 The	 car	model	 and	 the	 controller	 require	

																																																													
12	www.rock-robotics.org	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	40	of	61	

further	development	and	testing	at	higher	speeds.	Furthermore,	in	order	to	control	the	car	more	effectively	on	
slopes,	the	data	from	IMU	is	introduced	to	the	system.	

	

	

Figure	18:	Mia	control	model	and	communication	between	control	layers	

	

5.2.2 Jeep	Renegade	

CRF	will	use	in	Dreams4Cars	the	demonstrator	vehicle	based	on	Jeep	Renegade	developed	in	the	AdaptIVe	Euro-
pean	project.	The	demonstrator	vehicle	will	be	updated	in	the	equipment	in	order	to	be	used	inside	Dreams4Cars.	

	

	

Figure	19:	CRF	AdaptIVe	demonstrator	vehicle	on	Jeep	Renegade	

	

Currently,	the	vehicle	is	equipped	with	different	sensors	and	information	sources	to	detect	the	environment:	
front	radar,	lidar	and	camera,	side	ultrasound	sensors,	blind	spot	radar	sensors,	GNSS	receiver	and	Electronic	
Horizon.	

Information	coming	 from	these	sources	 is	 combined	and	organised	 in	 the	 fast	prototyping	unit	 (dSPACE	Mi-
croAutoBox)	 in	order	 to	generate	 the	 scenario	description	 sent	 to	 the	co-driver	module	 running	on	a	CarPC	
(Sintrones	VBOX).	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	41	of	61	

The	output	of	the	co-driver	describing	the	manoeuvre	to	be	followed	is	then	sent	back	to	the	fast	prototyping	
unit	where	 it	 is	used	to	control	the	vehicle	through	the	vehicle	actuators	(steering,	brake,	engine,	automatic	
gearbox).	Relevant	information	about	what	the	system	is	doing	is	also	given	to	the	driver	through	a	dedicated	
HMI	display;	moreover,	the	driver	can	interact	with	the	system	using	activation	buttons	on	the	steering	wheel.	

	

	 	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	42	of	61	

6 Generation	of	dreams	
As	 already	mentioned,	 the	 cloud	 simulation	 environment	 is	 implemented	 as	 an	OpenDS	 simulation,	 i.e.	 the	
dream	state.	While	the	dreams	are	not	an	exact	equivalent	of	the	dreams	of	biological	agents,	there	are	some	
crucial	aspects	of	“biological	dreams”	that	will	be	drawn	upon	 in	 this	project:	 (1)	dreams	and	other	kinds	of	
mental	simulations	are	off-line,	i.e.,	they	are	active	but	are	not	interacting	with	the	controlled	entity,	the	ex-
tra-neural	body	in	biological	agents,	in	particular	(2)	dreams	reactivate	the	control	system	as	if	it	were	interact-
ing	with	the	controlled	entity.	(3)	Dreams	enable	the	biological	agent	to	think	about	previous	and	future	situa-
tions	to	(4)	increase	its	ability	to	handle	situations	in	the	waking	state	[16],	[17].	

6.1 Creation	of	imaginary	scenarios	
The	dream-state	requires	a	number	of	functions,	which	provide	some	constraints	on	how	the	co-driver	will	op-
erate	and	on	the	overall	architecture.	The	functions	of	the	dream-state	amount	to	the	following	types	of	simu-
lations:		

• Simulations	of	previous	events.		
• Simulations	of	entirely	novel	events.	
• Simulations	that	recombine	aspects	of	previously	encountered	events	into	new	events.	
• Goal	directed	simulations	that	explore	different	simulation	paths	to	the	same	goal.	
• Goal	simulations	that	opportunistically	explore	which	goals	can	be	achieved	in	a	given	situation.		

6.1.1 Previous	event	simulation	

Simulating	previously	encountered	events,	i.e.,	replaying	the	experiences	that	match	those	of	the	waking,	driv-
ing	state,	serves	mainly	as	a	validity	and	reliability	check	of	the	dreams.	The	successful	reproduction	of	previ-
ous	events	thus	function	as	an	implicit	validation	of	the	overall	mechanisms	used.		

The	simulations	of	previously	encountered	events	will	be	achieved	by	using	the	motor	cortex	output	(after	ac-
tion	 selection)	of	 the	 co-driver	 as	 the	 input	 to	 the	OpenDS	 simulation	environment.	 The	 simulation	process	
may	in	this	task	be	started	by	randomly	picking	a	perceptual	state	from	the	run-time	collected	data	and	let	the	
co-driver	generate	the	motor	cortex	output.	This	behaviour	output	is	used	as	input	to	the	OpenDS	simulator,	
which	acts	as	a	forward	emulator	that	generates	the	perceptual	 input	(e.g.	 in	the	form	of	multi-beam	LIDAR	
scans,	digital	maps	or	any	of	 the	 sensory	 inputs	described	 in	 section	2.1)	 corresponding	 to	 the	 likely	 conse-
quence	of	performing	that	action,	which	in	turn	becomes	an	input	to	the	co-driver.	In	this	way,	a	closed	loop	of	
forward	emulation	in	OpenDS	and	the	inverse	models	of	the	co-driver	is	able	to	generate	simulated	chains	of	
behaviour	of	 various	 length.	 In	 practice	 the	 co-driver	 interacts	with	 the	emulator	 instead	of	 the	 real	world,	
which	should	reproduce	the	real	situation.		

This	type	of	simulation	allows	us	to	assess	if	the	OpenDS	simulator	is	able	to	function	as	a	forward	emulator	
with	the	co-driver	as	the	controller	and	that	the	environmental	simulation	is	sufficiently	similar	to	the	real	driv-
ing	environments.	This	includes	testing	if	there	is	some	limit	to	how	long	these	simulations	can	be	as	previous	
work	on	robot	models	has	experienced	problems	with	increase	of	noise	in	the	simulations.		

This	 type	of	 simulation	 requires	 that	 the	OpenDS	environment	 is	 somewhat	 similar	 to	 the	 real	 driving	envi-
ronments	so	that	comparisons	can	be	made	with	regard	to	generated	behaviour	from	the	co-driver	and	pre-
dicted	perceptions.	 In	this	case,	 the	forward	model	 in	the	co-driver	architecture	(section	2.3)	 is	not	used	for	
comparison	but	instead	the	OpenDS	generated	perceptual	input	and	the	collected	perceptions	from	real	driv-
ing	experiences	are	compared.		

While	this	first	type	of	simulation	is	only	for	validation	purposes,	the	following	simulations	serve	the	purpose	
of	learning	new	behavioural	strategies.		

6.1.2 Novel	event	simulation	

Simulations	of	entirely	novel	events	will	be	established	by	reserving	some	of	the	real-world	driving	data	for	use	
in	the	OpenDS	simulation	only.	The	reserved	data	sets	containing	novel	scenarios	will	be	 labelled	to	 indicate	
their	 importance,	 for	example	because	they	represent	situations	that	are	accident	prone,	or	near	crash	 inci-

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	43	of	61	

dents.	These	simulations,	while	generating	novel	behaviours,	mainly	serve	as	a	useful	first	step	for	testing	the	
learning	of	new	behaviours	 in	 the	dream-state.	An	advantage	of	 this	approach	 is	 that	 it	necessarily	 leads	 to	
“reasonable”	hypothetical	situations	since	they	do,	in	fact,	stem	from	real	situations,	but	it	requires	annotated	
data	from	real-driving	situations.	A	main	advantage	could	be	had	if	the	annotation	could	be	made	automatic	
and	derived	from	several	different	sources	of	driving	data.		

Another	 approach	 to	 creating	 novel	 events	 randomly	 instantiates	 the	 simulation	 starting	 point	 to	 push	 the	
simulation	towards	interesting	situations.	The	dreams	can	then	start	by	having	a	different	set	of	objects	(e.g.	
type	of	vehicle,	trucks	instead	of	cars),	the	structure	of	the	road	(straight	becomes	curved),	the	traffic	density	
may	change,	and	other	road	users	might	show	a	different	type	of	traffic	behaviour.	The	situations	that	are	cre-
ated	 should	 not	 be	 completely	 random	 as	 it	 would	 take	 a	 very	 long	 time	 to	 simulate	 all	 possible	 transfor-
mations	but	the	architecture	should	be	biased	towards	nightmares,	that	is,	the	dreams	should	be	about	situa-
tions	 that	would	be	a	possible	 threat	and	cause	of	an	accident.	This	 is	done	by	choosing	 situations	 that	are	
known	to	be	accident	related	or	by	choosing	uncommon	events.	The	uncommon	events	would	be	beneficial	to	
learn	in	dreams	as	they	are	not	easily	learned	in	real	driving	(even	though	such	situations	could	be	created	on	
test	 tracks).	 In	 practical	 terms	 these	 situations	may	 be	 created	 by	 properly	 ‘scripting’	 the	OpenDS	 environ-
ment,	by	generating	the	parameters	of	section	4	(vehicles,	road,	environmental	conditions,	sensor	noise,	etc.)	
according	to	suitable	distributions.	

6.1.3 Recombination	simulations	

Novel	events	can	also	be	achieved	by	rearranging	percepts,	that	is,	objects	and	other	road	users	may	change	
into	something	else.	These	re-combinations	are	achieved	by	random	rearrangements	of	percepts.	This	includes	
for	instance	changing	(1)	the	type	of	vehicle	encountered	in	a	given	situation	(e.g.	an	oncoming	bicyclist	on	a	
narrow	road	is	replaced	with	a	truck	on	the	same	road),	(2)	modifying	trajectories	of	road	participants	(e.g.	a	
pedestrian	previously	seen	crossing	at	a	pedestrian	crossing	is	now	simulated	crossing	100	meters	in	front	of	
the	crossing),	 (3)	changing	the	type	of	environment	 (e.g.	a	high-way	environment	 is	 replaced	with	a	country	
road),	(4)	rotating	between	forward	emulators	(e.g.,	replacing	the	vehicle	dynamic	model	for	dry	road	with	the	
one	 for	wet	 road).	Also	 in	 this	 case,	 it	 is	desirable	 to	bias	 these	 random	re-combinations	 towards	situations	
that	are	likely	to	generate	novel	and	useful	strategies	in	the	same	way	as	previously	described.	The	application	
of	global	metrics	of	quality	for	the	behaviour	(section	6.2)	allows	us	to	discover	these.	Failing	to	correctly	bias	
the	simulations	may	induce	learning	of	too	cautious	behaviours,	such,	e.g.,	the	co-driver	thinking	that	pedes-
trian	will	always	cross	outside	pedestrian	crossings	in	front	of	the	car.	

6.1.4 Goal	directed	simulations	

Another	type	of	simulation	does	not	alter	the	perceptions	per	se,	but	instead	explores	the	solution	space	for	a	
given	strategic	task.	In	these	simulations,	a	strategic	goal	such	as	‘turn	left	in	the	next	intersection’	is	set	and	
then	the	co-driver	tries	out	different	strategies	to	 learn	different	strategies	that	 lead	to	the	goal,	but	also	to	
discover	and	un-learn	or	decrease	the	salience	of	the	actions	that	lead	to	accidents	or	undesirable	driving	such	
as	jerkiness.		

6.1.5 Goal	exploration	simulation	

Subtly	different	 from	the	previous	 types	of	 simulations,	 these	simulations	generate	 random	goals	 in	a	given	
situation	and	try	to	achieve	them.	Such	simulations	assist	the	discovery	of	what	goals	can	and	cannot	be	realis-
tically	achieved	in	given	situations.	For	both	goal	directed	simulations	and	goal	exploration	simulations	it	will	
be	an	exploratory	task	 in	 itself	to	find	the	 levels	of	the	hierarchy	of	perceptual	goals	that	are	most	advanta-
geous	for	learning	new	behaviours.		

6.2 Dream-generating	mechanisms	
To	construct	the	simulations	mentioned	in	6.1.1-6.1.5	mechanisms	of	the	co-driver	itself	is	reused	in	the	simu-
lation	state	 (i.e.	 inverse	and	 forward	models)	and	some	mechanisms	will	 reside	 in	 the	OpenDS	environment	
itself.		

Co-driver	output.	The	basic	driving	force	of	the	dream	generation	in	all	of	the	simulations	is	the	co-drivers	mo-
tor	cortex	output	of	longitudinal	and	lateral	control	signals	which	is	used	as	the	main	input	to	the	OpenDS	sim-

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	44	of	61	

ulation,	in	a	similar	fashion	as	efference	copies	of	motor	commands	(at	various	levels	of	the	motor	hierarchy)	
are	thought	to	drive	mental	simulations	in	biological	agents	[19]–[21].	

Environmental	generation	aspects.	The	first	three	types	of	simulation	(6.1.1-6.1.3)	can	be	achieved	by	chang-
ing	aspects	within	the	OpenDS	car	simulation	environment,	such	as	initialising	the	starting	point	to	a	particular	
set	up	(6.1.1	and	6.1.2)	or	replacing	objects	(6.1.3).	As	mentioned	above	and	detailed	below	in	section	6.2.1	
how	the	simulations	are	changed	can	be	achieved	by	resorting	to	the	optimality	criteria.		

In	 the	perceptual	 domain	 some	advances	has	 been	made	using	 convolutional	 networks	 to	 generate	natural	
images	from	higher-level	descriptions	of	the	images	such	as	style,	viewpoint,	and	transformation	parameters	
such	as	color,	brightness,	saturation	et	cetera	[7].	Also,	they	have	been	able	to	interpolate	different	viewpoints	
to	create	previously	unseen	but	actual	viewpoints	of	the	learnt	objects.	This	type	of	mechanisms	could	possi-
bly	be	an	effective	means	to	generate	novel	events	and	recombinations	within	the	OpenDS	environment.		

Another	method	is	to	re-use	the	mechanisms	of	the	co-driver	as	detailed	in	the	next	two	paragraphs.		

Behaviour	generation	aspects.	The	goal	directed	and	goal	exploration	simulations	is	about	exploring	the	mo-
tor	space	and	we	here	explore	different	types	of	inverse	problems	approaches.		

Top	Down	Exploratory	Behavioural	 Instantiations	of	 the	 subsumption	architecture	may	be	used	 to	generate	
goal	directed	simulations	by	a	Perception-Action	learning	system.	Here,	the	randomized	selection	of	perceptu-
al	 goals	within	 the	hypothesized	perception-action	hierarchy.	 Thus,	while	 the	 system	 is	 always	 “motor	 bab-
bling”	in	a	manner	analogous	to	the	learning	process	of	infant	humans,	the	fact	that	this	motor	babbling	is	car-
ried	out	at	the	highest-level	P-A	manifold	means	that	the	learning	system	as	a	whole	more	rapidly	converges	
on	the	correct	model	of	the	world.	Higher-level	percepts	thus	become	the	goal	states	of	actions	parameterised	
per	hierarchical	level.	The	creation	of	each	perceptually	parameterised	action	at	progressively	higher	levels	of	
the	PA	hierarchy	arises	from	a	generalization	over	the	tested	space	of	action	possibilities	followed	by	a	para-
metric	compression.	This	 in	 turn	permits	active	sampling	of	 the	perceptual	domain	–	 the	agent	can	propose	
actions	with	perceptual	outcomes	the	agent	has	not	yet	experienced,	but	which	are	consistent	with	its	current	
representational	model	(this	implicitly	also	guarantees	falsifiability	of	the	perceptual	model).		

Motor	babbling	via	high	level	randomised	instantiation	of	perceptual	goal	states	thus	implicitly	specifies	a	task	
scheduling	problem	at	the	hierarchical	level	immediately	below	the	level	at	which	the	task	is	specified	i.e.	the	
specification	of	an	action	selection	problem.	Thus,	 in	the	dream	state,	the	predicatised	format	adopted	ena-
bles	progressive	top-down	randomised	variable	instantiation	such	that	a	series	of	increasingly-grounded	hypo-
thetical	imperatives/goals	are	created.	This,	in	effect,	allows	a	number	of	different	series	of	hypothetical	situa-
tions	(albeit	in	a	‘non-representational’	sense)	that	collectively	provide	training	data	significantly	beyond	that	
obtained	from	real-world	sampling.		

Motivated	 learning.	Another	mechanism	that	 is	used	to	explore	different	behavioural	paths	 in	goal	directed	
and	goal	exploration	simulations	is	so	called	motivated	learning.	Here,	the	agent	takes	advantage	of	opportun-
istic	interactions	with	the	environment	to	develop	a	sense	of	‘agency’	-	knowledge	of	what	actions	cause	pre-
dictable	effects	in	the	environment,	mediated	by	the	construction	of	internal	models	of	action-outcome	pair-
ing	in	the	brain	(see	forward	model	below,	and	section	2.3).	Motivated	learning	promotes	changes	in	the	ac-
tion	policy	 so	 that	 the	agent	 repeats	 actions	 that	produced	novel	or	 surprising	environmental	 events.	 Thus,	
this	mechanism	can	be	reused	in	the	dream	state	to	control	the	dreams	such	that	actions	that	generate	novel	
environmental	situations	will	be	explored	further	until	the	action-outcome	pairing	has	been	learnt	 in	the	co-
driver.		

Co-driver	 based	 forward	 models.	 The	 forward	 models	 of	 the	 co-driver	 both	 guides	 what	 is	 learnt	 during	
dreams	and	is	at	the	same	time	updated	during	dreams	while	new	situations	are	explored	and	experienced	in	
the	dream-state.	There	are	two	ways	in	which	the	forward	models	of	the	co-driver	can	guide	the	dream	expe-
riences:	(1)	the	prediction	error	of	the	forward	models	could	be	used	to	tag	which	situations	should	be	tried	
out	in	the	dream	state	(6.1.1-6.1.3),	and	(2)	in	the	dream	state,	the	forward	model	of	the	co-driver	might	play	
a	role	in	motivated	learning	by	using	the	difference	between	the	forward	model	of	the	co-driver	and	the	for-
ward	emulation	of	the	OpenDS	simulation.		

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	45	of	61	

6.2.1 Optimality	criteria	

The	metrics	for	evaluating	the	behaviour	of	the	system	can	also	be	used	for	developing	mechanism	to	prime	
the	dream	state	toward	useful	experiences	to	learn	from.	During	real	driving,	data	can	be	logged	in	relation	to	
the	following	criteria:	 (1)	safety	measurements,	such	as	space-time	distances,	 (2)	the	degree	to	which	traffic	
rules	are	obeyed,	(3)	comfort	criteria	(e.g.	short	term	aspects	such	as	jerkiness,	and	long-term	aspects	such	as	
travel	 time	and	traffic	 jams),	and	(4)	eco-driving	compliance.	Thus,	 the	criteria	can	be	used	to	control	which	
situations	are	instantiated	in	the	dream	state.		

	

6.3 Optimal	control	
Optimal	Control	(OC)	is	a	broad	range	of	control-theoretic	approaches	to	find	optimal	control	policies	to	steer	
a	dynamical	system	from	an	initial	state	to	a	final	goal	state	while	optimizing	some	performance	criterion	and	
subject	to	trajectory	constraints.	

In	cognitive	science,	 it	has	been	acknowledged	that	Optimal	Control	well	describes	human	movements,	e.g.,	
[21]–[26].	How	movement	 is	optimized	is	actually	unclear:	there	are	explanations	stating	that	for	movement	
control	 that	 is	 critical	 for	 survival,	 humans	and	animals	 learn	 to	minimize	motor	noise	and	maximize	move-
ment	speed.	It	was	also	shown	that	a	particular	form	of	OC	(Direct	OC)	is	equivalent	to	reinforcement	learning	
[27].	We	used	OC	successfully	 in	the	driving	domain	and	 it	turned	out	to	fit	 fairly	well	to	human	trajectories	
[3],	[5],	[11],	[28]–[32],	etc.	

For	Dreams4Cars,	Optimal	Control	 is	relevant	because	it	 is	a	method	to	derive	optimal	goal-directed	actions.	
This	works	particularly	well	 for	 low	 level	strategies	such	as	simple	manoeuvres	 like	a	 lane	change,	overtake,	
etc.	(see	section	7).	

The	fundamental	structure	of	an	OC	problem	is	as	follows.	The	system	to	be	controlled	(the	“plant”)	 is	a	dy-
namical	system	described	as	a	set	of	Ordinary	Differential	Algebraic	Equations	(or	equivalent)	such	as:	

	

𝑥 = 𝑓 𝑥, 𝑢 	 (3)	
	

where	𝑥	is	the	state	vector	and	𝑢	the	control	input	vector	(the	aim	being	to	find	𝑢).	The	plant	dynamic	model	
𝑓 . 	in	traditional	OC	is	typically	an	analytical	model.	There	are	however	examples	where	the	plant	dynamics	
are	 learnt	 [23].	Deploying	OC	on	 learned	forward	models	 is	already	a	simple	 form	of	dreaming,	 in	 the	sense	
that	optimized	inverse	models	are	synthetized	for	the	goal	at	hand	given	learnt	forward	models.	

The	goal	is	typically	defined	by	a	desired	final	state	(5)	where	the	initial	state	(4)	is	the	current	state,	meaning	
that	the	problem	is	to	find	a	way	to	reach	the	final	state	from	the	current	situation:	

	

𝑥 0 = 𝑥>	 (4)	
	

𝑥 𝑇 = 𝑥C 	 (5)	
	

Optimality	criteria	that	work	well	for	human	motion	are	combinations	of	minimum	time	and	minimum	jerk	cri-
teria	 (hence	 capturing	 the	 inherent	 trade-off	 between	 speed	 and	 accuracy	 that	 is	 typical	 in	 human	move-
ment13).	

																																																													
13	Human	motor	noise	is	greatly	due	to	neuron	noise	and	is	proportional	to	control	signal.	Hence	minimizing	the	power	of	
the	control	signal	(which	is	achieved	by	minimizing	e.g.	the	square	jerk)	is	a	way	to	minimize	also	the	power	of	the	input	
noise	to	the	plant.	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	46	of	61	

	

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒H I 	𝐽 = 𝑗 𝑡 CC
> 𝑑𝑡 + 𝑤C𝑇	 (6)	

	

where	 𝑗 𝑡 	 is	 the	 longitudinal	 or	 lateral	 jerk	 (derivative	 of	 acceleration),	 𝑇	 the	 movement	 time	 and	𝑤C 	 a	
weight	to	set	the	trade-off	between	minimum	jerk	and	minimum	time	criteria	[3],	[28]–[30].	

Finally,	constraints	in	the	state	vector	trajectory	may	be	imposed	such	as:	

	

𝑔 𝑥, 𝑡 < 0	 (7)	
	

These	constraints	may	be	used	to	impose	conditions	such	as	remaining	in	the	lane,	remaining	within	the	limits	
of	tire	adherence,	avoiding	space-time	positions	that	are	reserved	for	other	traffic	(including	avoiding	of	being	
in	the	same	place	and	time	of	another	object).	

Depending	on	the	model	of	the	plant,	there	are	many	methods	to	solve	OC	problems.	If	the	plant	is	a	kinemat-
ic	linear	model,	closed	form	solutions	exist.	These	have	been	used	to	form	“motor	primitives”	in	many	of	the	
cited	papers	and	are	also	at	the	bottom	of	the	current	AdaptIVe	agent.	

If	the	plant	model	is	non-linear,	such	as	a	learnt	plant	model,	there	exist	non-linear	solvers.	The	drawback	of	
these	solvers	is	that	they	are	not	fast	enough	to	evaluate	a	full	range	of	motor	strategies	(hence	the	motor	cor-
tex	in	Figure	2	could	not	be	computed	or	could	be	computed	with	very	coarse	resolution).	However,	this	is	not	
a	problem	for	offline	use,	such	as	the	dreaming	mechanism.	

One	approach	 that	we	have	 found	extremely	powerful	 is	based	 in	 the	calculus	of	variations,	 combined	with	
computer	 algebra	 systems.	 This	 approach	 requires	 that	 the	 plant	model	 can	 be	 symbolically	 differentiated	
(which	is	the	case	with	some	machine	learning	methods,	for	example	locally	weighted	projection	regression	-	
LWPR).	With	symbolic	algebra	manipulation,	what	was	the	main	weakness	of	the	vibrational	approach	(the	dif-
ficulty	 in	computing	the	co-state	equations)	turned	out	to	be	a	strength	(symbolically	derived	co-state	equa-
tions	greatly	help	the	solution	of	the	problem)	[5],	[33].	

In	Dreams4	Cars	OC	will	be	used	both	for	generating	high-resolution	action	spaces	based	on	kinematic	models	
and	closed	form	solutions	and	to	generate	the	same	maps	with	analytical	and	learnt	plant	models.	

6.4 Exploratory	Learning	
Perception-Action	 learning	can	be	approached	actively	via	 the	 randomized	 identification	of	perceptual	goals	
within	the	PA	hierarchy	in	order	to	generate	exploratory	training	data.	Perceptual	goals	exist	at	all	levels;	the	
subsumptive	nature	of	the	hierarchy	means	that	goals	and	sub-goals	are	scheduled	with	increasingly	specific	
content	 as	 high-level	 goals	 are	 progressively	 grounded	 through	 the	 hierarchy	 (e.g.	 the	 high-level	 intention	
`drive	to	work'	involves	the	execution	of	sub-tasks	with	correspondingly	lower-level	perceptual	goals	e.g.	keep-
ing	the	lane).	

This	can	apply	across	different	mechanisms	–in	particular,	across	the	implicit	symbolic/sub-symbolic	divide	im-
posed	 in	 the	Dreams4Cars	architecture	 (logical	 reasoning	applies	only	at	 the	 top	 levels	of	 the	P-A	hierarchy	
with	respect	to	discrete,	highway-code	relevant	configuration	changes	[e.g.	lane	changes]–	changes	in	metric	
relations,	on	the	other	hand	[e.g.	within-lane	changes	in	car	proximity]	are	implicitly	sub-symbolic,	and	dealt	
with	via	optimized	motor	primitives).	

At	higher	 levels,	exploratory	PA	 ‘motor	babbling’	 thus	occurs	via	 logically-constrained	 top-down	randomised	
variable	 instantiation	 (predicatization	 serves	 as	 a	 common	 interface	 between	 hierarchical	 levels;	 both	 low-
level	 sensor-data	 and	 higher-level	 relational	 concepts	 can	 be	 expressed	 as	 predicates	 of	 appropriate	 arity).		
The	 PA	 motor	 babbling	 process	 thus	 complements	 goal-directed	 exploration	 –i.e.	 exploration	 of	 different	
strategies	to	achieve	a	given	high-level	goal.	New	learning	is	thus	initiated	when,	for	example,	OC	is	required	
by	top-down	variable	 instantiation	to	solve	a	specific	 trajectory	optimisation	problem	arising	 from	the	novel	
concatenation	of	scheduled	tasks.	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	47	of	61	

Variable	 instantiation	 for	 exploratory	 learning	will	 initially	 be	deployed	 via	declarative	 fuzzy	 reasoning,	with	
parallel	research	being	undertaken	to	 implement	this	approach	fully	 in	neuro	(i.e.	with	the	 logic	constituting	
the	 top	 layers	 of	 the	 Dreams4Cars	 neural	 architecture	 and	 top-down	 instantiation	 conducted	 via	 the	 usual	
neural	feedback	mechanisms).		In	this	case,	the	logic	levels	would	be	fixed;	a	key	ambition	is	to	have	the	entire	
neural	system	fully	trainable	(logic	included);	however	certain	fundamental	theoretical	issues	need	to	resolve	
in	order	to	fully	achieve	this.	The	exploratory	driver	will	thus	either	derive	from	top-level	predicates	generated	
via	declarative	reasoning	or	else	from	the	output	of	selected	neurons	in	an	integrated	neural	system.		

The	Dreams4Cars	architecture	will	enforce	compatibility	across	code	bases	and	code	types	(in	particular,	de-
clarative	and	non-declarative	code).	The	combination	of	complied	and	non-compiled	code	will	be	initially	han-
dled	via	a	simple	file	based	interface	(which	is	suitable	given	the	low-bandwidth	of	high-level	predicate	decla-
rations/variable	 instantiations;	 high-level	 fuzzy	 deduction	 naturally	 operates	 at	 a	 lower	 temporal	 resolution	
than	the	low-level	trajectory	optimisation).	In	a	fully	neuralised	implementation,	no	such	inter-mechanism	in-
terfacing	is	required.	

Logical	predicatization	and	 logical	variable	description	will	be	designed	to	mirror	 the	parametric	 interface	to	
OpenDS	described	 in	Section	4,	enabling	 logical	variable	 instantiation	to	 interface	with	&	operate	within	the	
cloud	environment	implementing	the	OpenDS	simulator.	

6.5 Action	discovery	
Action	discovery	could	be	defined	as	the	driving	system	having	the	capacity	to	learn	new	actions	that	have	not	
been	explicitly	coded	into	the	system.		This	problem	is	an	area	of	active	research	for	a	number	of	groups	and	is	
a	different	kind	of	problem	to	the	learning	that	is	done	in	deep	neural	networks.	In	this	project,	we	aim	to	lev-
erage	our	 (Sheffield	University)	understanding	and	models	of	action	selection	and	 reinforcement	 learning	 in	
the	vertebrate	brain.	Progress	could	be	made	by	marrying	together	reinforcement	learning	with	other	forms	of	
artificial	intelligence	learning.			

We	will	explore	the	possibility	of	enabling	action	discovery	by	using	intrinsic	reward.		We	will	attempt	to	create	
a	system	that	models	the	future	state	of	the	environment	 in	response	to	 its	actions,	then	compares	the	real	
result	to	its	prediction.		The	intrinsic	reward	would	be	delivered	in	direct	proportion	to	the	difference	between	
the	model	and	 the	reality,	 thus	motivating	 the	system	to	 repeat	actions	 that	give	 rise	 to	unexpected	conse-
quences.	

In	a	separate	sense,	action	discovery	could	be	conceived	as	being	similar	to	learning	sequences	of	actions	that	
are	executed	smoothly,	one	after	the	other.		For	example,	an	overtaking	manoeuvre	is	a	sequence	of	change-
lane,	accelerate,	change-lane	back	again.			If	the	system	could	learn	to	execute	these	manoeuvres	in	the	cor-
rect	order	and	in	the	correct	context,	then	we	could	reasonably	say	that	the	system	had	learned	“overtake”	as	
a	distinct	action.				

This	conception	of	action	discovery	has	a	bearing	on	the	system	architecture	in	so	far	as	a	history	of	recently	
completed	actions	must	be	stored	and	used	as	input	to	the	selection	of	the	current	action.			

	 	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	48	of	61	

7 Example	
We	give	here	one	example	to	clarify	how	the	Dreams4Cars	system	should	work	for	learning	new	behaviours.	
The	example	deals	with	the	discovery	and	learning	of	overtake	manoeuvres	on	two-lanes	roads	with	traffic	in	
both	directions.	This	means	that	that	the	system	should	learn	to	find	a	safe	gap	and	execute	an	optimized	se-
quence	of	actions:	1)	left	lane	change,	2)	acceleration,	3)	right	lane	change.	

Figure	14	shows	how	the	AdaptIVe	system	(which	 is	 the	baseline	 for	Dreams4Cars)	operates	 in	 this	case.	As	
said	(section	3.2)	AdaptIVe	uses	part	of	the	Dreams4Cars	architecture:	a	layered	control	architecture	with	two	
layers	and	an	action	selection	mechanism	operating	on	a	two-dimensional	action	space	(‘motor	cortex’).	

The	layered	control	combines	longitudinal	motor	primitives	for	speed	adaptation	with	lateral	motor	primitives	
for	adaptation	of	the	position	in	the	road.	At	the	second	(and	last)	level	of	the	architecture	the	system	uses	the	
motor	 primitives	 to	 produce	 behaviours	 such	 as	 lane	 following	 or	 lane	 changes	with	 simultaneous	 achieve-
ment	of	any	uniform	speed	at	any	point	(including	zero	speed	at	a	stop	line	–stop	behaviour–	or	same	speed	of	
a	 leading	vehicle	as	some	time	gap	–car	 following–).	The	system	does	not	have	higher	 levels	of	control	and,	
thus,	does	not	conceive	sequences	of	actions.	For	example,	in	a	situation	like	Figure	14,	the	system	might	con-
ceive	actions	such	as	“keep	the	lane	and	follow	the	car	in	front”	(a)	or	“change	lane	and	get	a	higher	desired	
speed”	(b).	When	travelling	on	a	road	with	multiple	 lanes	 in	the	same	direction,	the	system	will	change	lane	
whenever	it	finds	a	vehicle	that	is	somewhat	slower	than	its	target	speed	(if	the	target	lane	is	not	occupied	by	
another	vehicle).	With	these	two	layers,	the	system	may	overtake	other	vehicles	but	this	 is	an	emergent	be-
haviour,	 resulting	 from	 changing	 to	 lanes	 that	 allow	 to	 travel	 at	 a	 desired	 speed	 (just	 like	 cars	 switching	 to	
fastest	lanes	in	a	motorway).	The	system	will	change	to	the	right	lane	whenever	this	is	a	as	fast	as	the	current	
lane;	hence	the	system	might	give	then	impression	of	making	overtake	manoeuvres	but	the	system	actually	is	
not	planning	a	sequence	of	actions.		

The	system	will	never	overtake	on	a	two-lane	road	with	traffic	in	both	directions.	Figure	14,	bottom,	shows	a	
schematic	representation	of	the	action	space	in	this	case.	The	car	coming	from	the	opposite	direction	inhibits	
all	actions	ending	in	the	left	lane	because	the	system	does	not	make	any	plan	after	the	lane	change:	action	b	
for	the	system	means	changing	to	the	left	lane	and	remaining	there,	hence	colliding	sooner	or	later	with	the	
vehicle	arriving	form	the	opposite	direction.	Instead,	if	the	system	plans	to	remaining	in	the	lane,	the	vehicle	
ahead	will	inhibit	actions	leading	to	rear	end	collision	so	that	the	system	will	select	action	a,	which	is	following	
the	front	car,	even	if	overtake	is	possible	because	there	is	sufficient	gap	to	manoeuvre.	

	

Figure	20:	A	system	that	knows	only	lane	change	behaviours	will	never	overtake	in	a	two-lane	road	with	
traffic	in	both	directions	(see	text).	

	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	49	of	61	

Overtake	 manoeuvres	 are	 particularly	 dangerous	 manoeuvres.	 The	 safe	 execution	 of	 such	 manoeuvres	 re-
quires	conceiving	a	sequence	of	actions,	with	return	to	the	original	lane,	and	a	correct	evaluation	of	the	future	
dynamics	of	the	vehicles.	

It	is	true	that	one	might	restrict	the	operation	of	automated	vehicle	to	never	overtake	in	two	lane	roads	(this	is	
what	AdaptIVe	 is).	 Alternatively,	 one	might	 extend	 the	 layered	 architecture	 of	 AdaptIVe	with	 another	 layer	
that	plans	sequences	of	actions.	However,	there	are	many	variations	in	the	configuration	shown	in	Figure	14	
(position	and	speed	and	number	of	vehicles,	actual	geometry	and	condition	of	the	road	etc.).	Even	if	the	ex-
ample	is	so	simple,	there	may	be	variations	that	are	not	considered	by	the	designer	when	developing	the	algo-
rithms	so	that	developing	and	testing	the	function	may	require	significant	work.		

How	could	the	Dreams4Cars	technology,	in	this	simple	example	situation,	discover	and	learn	overtake	behav-
iours?	And	what	is	the	final	result	of	learning?		

Let	us	suppose	that	the	system	has	already	developed	motor	primitives	and	behaviours	like	the	Adaptive	sys-
tem.	Let	us	call	the	motor	primitives	“level	0”	and	the	lane	change	and	longitudinal	following	behaviour	“level	
1”.	The	system	is	now	trying	to	develop	behaviours	for	a	new	level,	which	is	“level	2”.	

Let	the	target	perceptual	goal	for	level	2	be:	“the	green	car	has	to	be	in	front	of	the	now-leading	red	car”.	In	
trying	 to	achieve	 this	goal,	 the	system	begins	motor	babbling	at	 level	2,	 testing	various	combinations	of	 the	
behaviours	 it	 already	 knows	 at	 level	 1,	 such	 as	 various	 combinations	 of	 lane	 change	 and	 accelera-
tion/deceleration.	At	this	level	of	abstraction	(level	2),	the	system	only	conceives	sequences	of	actions,	among	
which	the	correct	sequence	1)	left	lane	change,	2)	acceleration,	3)	right	lane	change.	However,	the	parameters	
for	each	of	these	actions	(such	as	how	much	to	accelerate,	where	exactly	to	position	in	the	lane,	how	quickly	
to	change	lanes,	etc.)	are	not	specified	here.	It	will	be	responsibility	of	levels	0	and	1	to	optimize	the	parame-
ters.	Hence,	when	babbling	at	level	2,	the	system	is	actually	defining	an	optimal	control	problem	resulting	by	
the	chaining	of	three	sub	problems.		

Let	us	assume	that	we	use	(in	this	example)	optimal	control,	using	the	learnt	forward	models	for	the	dynamics	
of	the	controlled	plant.	Optimal	control	provides	a	synthesis	(i.e.	the	optimal	policy)	to	steer	the	plant	to	the	
desired	state	and	is	somewhat	equivalent	to	reusing	the	forward	emulator	for	infinite	simulations	until	the	op-
timal	solution	is	found	(Optimal	Control	on	learnt	dynamics	is	equivalent	to	reinforcement	learning	in	dream-
ing	states).	

Let	us	 suppose	 that	a	 successful	 sequence	of	optimally	parametrized	action	b’+b’’+b’’’	 is	discovered.	At	 this	
point	the	sequence	is	no	longer	colliding	with	the	vehicle	coming	from	the	opposite	direction.	Hence	the	mo-
tor	space	turns	to	the	representation	of	Figure	15,	bottom.	In	particular,	the	vehicle	coming	in	the	opposite	di-
rection	is	no	longer	inhibiting	the	lane	change	actions	and	the	system	will	thus	choose	to	change	the	lane	(as	
the	beginning	of	the	sequence	b’+b’’+b’’’).	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	50	of	61	

	

Figure	21:	A	system	that	knows	only	lane	change	behaviours	will	never	overtake	in	a	two-lane	road	with	
traffic	in	both	directions	(see	text).	

	

Once	a	successful	action	is	discovered,	mechanisms	such	as	motivated	learning	may	be	activated.	The	system	
will	thus	simulate	many	scenarios	similar	to	Figure	15,	with	variations	in	the	parameters	(e.g.,	the	distance	of	
the	 incoming	 vehicle	may	 be	 different).	 In	 this	way,	 the	 system	 should	 learn	mapping	 from	 the	 perceptual	
space	(figure	15,	top)	to	the	motor	space	(figure	15,	bottom)	so	that	the	recognition	that	the	overtake	action	is	
possible	will	happen	on	the	fly	(if	the	 incoming	vehicle	 is	too	close	 it	will	still	 inhibit	the	 lane	change	and	no	
overtake	manoeuvre	will,	begin).	

Simultaneous	with	learning	the	above	mapping,	the	system	will	also	learn	that	certain	sequences	of	actions	are	
possible/impossible	given	the	context,	hence	not	only	learning	the	instantaneous	control,	but	also	learning	the	
whole	sequence	of	actions.	

	 	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	51	of	61	

8 Bibliographical	References	
[1] P. Cisek, “Cortical mechanisms of action selection: the affordance competition hypothesis,”

PhilosTransRSocLond B Biol Sci, vol. 362, no. 1485, pp. 1585–1599, 2007.	

[2] M. Bojarski et al., “End to end learning for self-driving cars,” ArXiv Prepr. ArXiv160407316, 2016.

[3] M. Da Lio et al., “Artificial Co-Drivers as a Universal Enabling Technology for Future Intelligent Vehi-
cles and Transportation Systems,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 1, pp. 244–263, 2015.

[4] R. Bogacz and K. Gurney, “The basal ganglia and cortex implement optimal decision making between
alternative actions.,” Neural Comput., vol. 19, no. 2, pp. 442–477, Feb. 2007.

[5] E. Bertolazzi, F. Biral, and M. Da Lio, “Symbolic-numeric efficient solution of optimal control problems
for multibody systems,” J. Comput. Appl. Math., vol. 185, no. 2, pp. 404–421, 2006.

[6] A. Dosovitskiy and T. Brox, “Inverting visual representations with convolutional networks,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4829–4837.

[7] A. Dosovitskiy, J. Springenberg, M. Tatarchenko, and T. Brox, “Learning to generate chairs, tables and
cars with convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell., 2016.

[8] M. Bojarski et al., “Explaining How a Deep Neural Network Trained with End-to-End Learning Steers a
Car,” ArXiv Prepr. ArXiv170407911, 2017.

[9] D. Betaille and R. Toledo-Moreo, “Creating Enhanced Maps for Lane-Level Vehicle Navigation,” IEEE
Trans. Intell. Transp. Syst., vol. 11, no. 4, pp. 786–798, Dec. 2010.

[10] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map representation for autonomous driving,” in
Intelligent Vehicles Symposium Proceedings, 2014 IEEE, 2014, pp. 420–425.

[11] V. Cossalter, M. Da Lio, R. Lot, and L. Fabbri, “A general method for the evaluation of vehicle manoeu-
vrability with special emphasis on motorcycles,” Veh. Syst. Dyn., vol. 31, no. 2, pp. 113–135, 1999.

[12] C. Rauch, E. Berghöfer, T. Köhler, and F. Kirchner, “Comparison of Sensor-Feedback Prediction Meth-
ods for Robust Behavior Execution,” in KI 2013: Advances in Artificial Intelligence, Springer, 2013, pp.
200–211.

[13] R. Math, A. Mahr, M. M. Moniri, and C. Müller, “OpenDS: A new open-source driving simulator for re-
search,” in Adjunct Proceedings of the AutomotiveUI’12 Conference, Portsmouth, NH, USA, 2012.

[14] K. Maddock, “Vehicle Simulation with Bullet.
https://docs.google.com/document/d/18edpOwtGgCwNyvakS78jxMajCuezotCU_0iezcwiFQc/edit?pref=
2&pli=1.” 16-Aug-2010.

[15] “CityEngine Quick Start Guide,”
http://cehelp.esri.com/help/index.jsp?topic=/com.procedural.cityengine.help/html/quickstart/overview.ht
ml. .

[16] H. Svensson, S. Thill, and T. Ziemke, “Dreaming of electric sheep? Exploring the functions of dream-like
mechanisms in the development of mental imagery simulations,” Adapt. Behav., vol. 21, no. 4, pp. 222–
238, 2013.

[17] H. Svensson and S. Thill, “Beyond bodily anticipation: Internal simulations in social interaction,” Cogn.
Syst. Res., vol. 40, pp. 161–171, 2016.

[18] R. Cotterill, Enchanted looms conscious networks in brains and computers /. Cambridge, UK ; Cam-
bridge University Press, 1998.

[19] G. Hesslow, “The current status of the simulation theory of cognition.,” Brain Res., vol. 1428, pp. 71–9,
Jan. 2012.

[20] H. Svensson, Simulations. Linköping: Linköping University Electronic Press, 2013.

[21] S. G. Khan, G. Herrmann, F. L. Lewis, T. Pipe, and C. Melhuish, “Reinforcement learning and optimal
adaptive control: An overview and implementation examples,” Annu. Rev. Control, vol. 36, no. 1, pp. 42–
59, 2012.

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	52	of	61	

[22] D. Liu and E. Todorov, “Evidence for the flexible sensorimotor strategies predicted by optimal feedback
control.,” J. Neurosci. Off. J. Soc. Neurosci., vol. 27, no. 35, pp. 9354–68, Aug. 2007.

[23] D. Mitrovic, S. Klanke, and S. Vijayakumar, “Adaptive Optimal Feedback Control with Learned Internal
Dynamics Models,” Robotics, vol. 264, pp. 65–84, 2010.

[24] A. J. Nagengast, D. a Braun, and D. M. Wolpert, “Optimal control predicts human performance on ob-
jects with internal degrees of freedom.,” PLoS Comput. Biol., vol. 5, no. 6, p. e1000419, Jun. 2009.

[25] P. Viviani and T. Flash, “Minimum-jerk, two-thirds power law, and isochrony: converging approaches to
movement planning.,” J. Exp. Psychol. Hum. Percept. Perform., vol. 21, no. 1, pp. 32–53, Mar. 1995.

[26] C. M. Harris, “Biomimetics of human movement: functional or aesthetic?,” Bioinspir. Biomim., vol. 4,
no. 3, p. 33001, Sep. 2009.

[27] R. S. Sutton, A. G. Barto, and R. J. Williams, “Reinforcement learning is direct adaptive optimal control,”
IEEE Control Syst. Mag., vol. 12, no. 2, pp. 19–22, 1992.

[28] M. Da Lio, A. Mazzalai, K. Gurney, and A. Saroldi, “Biologically Guided Driver Modeling: the Stop Be-
havior of Human Car Drivers,” IEEE Trans. Intell. Transp. Syst., vol. submitted.

[29] M. Da Lio, A. Mazzalai, and M. Darin, “Cooperative Intersection Support System Based on Mirroring
Mechanisms Enacted by Bio-Inspired Layered Control Architecture,” IEEE Trans. Intell. Transp. Syst.,
vol. submitted.

[30] P. Bosetti, M. Da Lio, and A. Saroldi, “On Curve Negotiation: From Driver Support to Automation,”
IEEE Trans. Intell. Transp. Syst., vol. 16, no. 4, pp. 2082–2093, 2015.

[31] F. Biral, E. Bertolazzi, and M. Da Lio, “The Optimal Manoeuvre,” in Modelling, Simulation and Control
of Two-Wheeled Vehicles, Wiley, 2014, pp. 119–154.

[32] F. Biral, M. da Lio, R. Lot, and R. Sartori, “An intelligent curve warning system for powered two wheel
vehicles,” Eur. Transp. Res. Rev., vol. 2, no. 3, pp. 147–156, 2010.

[33] E. Bertolazzi, F. Biral, and M. Da Lio, “Symbolic-numeric indirect method for solving optimal control
problems for large multibody systems: The time-optimal racing vehicle example,” Multibody Syst. Dyn.,
vol. 13, no. 2, pp. 233–252, 2005.

[34] Synergy Research Group, “Amazon Cloud Growth is Hardly Hampered by the Chasing Pack,”
https://www.srgresearch.com/articles/amazon-cloud-growth-hardly-hampered-chasing-pack. .

[35] E. Knaser and D. Ahuja, “In-Depth Assessment of Amazon Web Services,”
https://www.gartner.com/doc/3371747, 14-Jul-2016. .

[36] K. Hilgendorf and D. Ahuja, “In-Depth Assessment of Microsoft Azure IaaS,”
https://www.gartner.com/doc/3371748, 14-Jul-2016. .

[37] D. Toombs and D. Ahuja, “In-Depth Assessment of Google Cloud Platform,”
https://www.gartner.com/doc/3377519, 13-Jul-2016. .

[38] E. Knaser, “Evaluation Criteria for Cloud Infrastructure as a Service,”
https://www.gartner.com/doc/3322017, 18-May-2016. .

	

	
	

	 	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	53	of	61	

9 Appendix	

9.1 Comparison	of	Major	Cloud	Service	Providers	
In	this	section	we	investigate	on	the	hardware	requirements	of	the	proposed	cloud	environment	and	compare	
major	cloud	service	providers	that	qualify	for	hosting	the	simulation	environment	as	a	cloud	service	(which	is	a	
possible	follow	up	product	of	the	project).	

According	to	Synergy	Research	Group	[34],	the	most	influential	players	in	the	public	cloud	provider	market	by	
end	of	March	2017	are	Amazon,	Microsoft,	 IBM,	 and	Google.	While	 the	worldwide	market	 share	of	market	
leader	Amazon	Web	Services	(AWS)	is	holding	steady	at	33%,	Microsoft,	IBM,	and	Google	are	gaining	ground	at	
the	expense	of	 smaller	players	 (c.f.	 Figure	22).	Microsoft	and	Google	achieved	annual	growth	 rates	of	more	
than	80%	(AWS	<50%);	however,	AWS	revenues	are	still	 comfortably	bigger	 than	the	other	 three	combined.	
Continuing	this	trend,	Google	and	Microsoft	might	catch	up	with	Amazon	very	soon.	Today,	the	market	share	
of	these	three	operators	is	larger	than	those	of	all	the	other	(200+)	providers	together.	

	

	

Figure	22:	Cloud	Provider	Growth	Rate	and	Market	Share	

While	IBM	continues	to	lead	in	hosted	private	cloud;	Amazon,	Microsoft,	and	Google	are	the	lead	providers	in	
IaaS/PaaS.	 In	particular	AWS	dominates	the	 IaaS	market;	while	Microsoft’s	Windows	Azure	slightly	 leads	the	
PaaS	market;	Google	Cloud	Platform	finishes	up	in	third	place	in	both	categories.		

With	 regard	 to	 the	proposed	cloud	environment	of	 this	project,	we	narrow	down	our	view	to	 the	 top	 three	
public	 cloud	 providers	 in	 PaaS	 and	 rely	 on	 the	 respective	 in-depth	 assessments	 published	 in	May	 2016	 by	
Gartner,	 Inc.,	an	American	research	and	advisory	firm	providing	information	technology	related	insight	for	 IT	
and	 other	 business	 leaders	 located	 across	 the	world	 [35],	 [36],	 [37].	 Research	 and	 scores	 are	 based	 on	 the	
Evaluation	Criteria	for	Cloud	Infrastructure	as	a	Service	[38]	which	is	made	up	of	234	criteria	items.	The	234	cri-
teria	 items	are	organized	into	four	technical	categories	(Compute,	Networking,	Storage,	Security	and	Access)	
and	 four	non-technical	 categories	 (Service	Offerings,	Management	 and	DevOps,	 Service	 and	 Support	 Levels,	
Price	and	Billing).	Within	each	of	the	above	categories,	criteria	have	been	organised	into	Required,	Preferred	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	54	of	61	

and	Optional	sections.	Table	6	depicts	the	overall	score	where	Amazon	scored	highest	in	all	sections	followed	
by	Microsoft	and	Google.	

	 Required	 Preferred	 Optional	
Amazon	Web	Services	 92%	 71%	 61%	
Microsoft	Azure	 88%	 57%	 47%	
Google	Cloud	Platform	 70%	 41%	 24%	

Table	6:	Score	of	different	cloud	providers	based	on	234	criteria	items.	

Regarding	a	rapidly	growing	choice	of	products,	service	 improvements	 in	short	 intervals	and	prices	dropping	
on	an	almost	daily	basis,	we	are	aware	that	long-term	predictions	are	not	possible	and	figures	like	the	afore-
mentioned	ones	were	most	probably	outdated	before	they	had	been	published.	In	addition	to	the	overall	re-
sults,	which	already	provide	a	good	indication	about	the	quality	of	service	of	these	three	providers,	we	investi-
gate	on	the	most	critical	features	concerning	the	proposed	simulation	environment,	i.e.	the	service	categories	
compute,	storage,	networking,	and	pricing	structure.	For	assessment	and	better	comparison	of	 the	different	
platforms	we	define	the	following	reference	specification	for	computing	hardware	of	which	we	know	that	the	
proposed	driving	simulation	software	is	showing	good	performance.	

• Intel	i7	processor	(8	cores,	2.5	GHz)	
• NVIDIA	GeForce	GTX	970	graphics	card14	(1664	CUDA	cores,	4	GB	video	memory)	
• 16	GB	RAM	
• 30	GB	SSD	(operating	system	and	simulation	environment)	
• 100	GB	HDD	“cold	storage”	(log	data)	
• Operating	system:	Windows,	Mac	OS	X,	Linux	
• Java	Runtime	Environment	(version	8)	
• Relational	data	base	
• Static	IP	address	

9.1.1 	Amazon	Web	Services	

Amazon	Web	Services	offers	a	very	comprehensive	pay-per-use	cloud	service	consisting	of	many	different	sys-
tem	components	 that	could	be	used	 to	 set	up	almost	any	configuration.	The	Elastic	Compute	Cloud15	 (EC2),	
which	 provides	 scalable	 computing	 on	 demand,	 allows	 the	 user	 to	 choose	 from	57	 different	 instance	 types	
varying	in	CPU	power,	memory	size,	network	performance,	and	presence	of	one	or	more	GPUs.	The	instance	
types	are	grouped	 into	general	purpose,	GPU	enabled,	 compute	optimized,	memory	optimized,	and	storage	
optimized	 instances	where	each	group	 consists	of	 instances	 ranging	 from	 low-performance	 instances	of	 the	
previous	generation	to	high-performance	instances	of	the	latest	generation.	In	addition	to	the	computing	ca-
pability,	the	user	can	add	any	amount	of	persistent	storage,	which	is	called	Amazon	Elastic	Block	Store	(EBS),	
and	choose	from	63,508	Amazon	Machine	Images	(AMI).	An	AMI	is	a	template	that	contains	the	software	con-
figuration	 (operating	 system,	 application	 server,	 and	 applications)	 required	 to	 launch	 an	 instance.	 Provided	
operating	systems	are	several	32-bit	and	64-bit	versions	of	Amazon	Linux,	Cent	OS,	Debian,	Fedora,	Gentoo,	
OpenSUSE,	Red	Hat,	SUSE	Linux,	Ubuntu,	and	Windows.	

Out	 of	 all	 57	 instance	 types,	 Amazon	 provides	 only	 two	 instance	 types	 that	 are	 optimized	 for	 graphics-
intensive	applications	on	the	one	hand	and	meet	the	requirements	of	the	reference	specification	on	the	other	

																																																													
14	 	A	 graphics	 card	 is	 required	 to	 ren-
der	the	simulation	screen	(e.g.	video	for	validation)	and	for	computation	of	several	image-based	sensors	(lidar,	
radar,	etc.)	
15	 	Amazon	 Elastic	 Computing	 Cloud:	
https://aws.amazon.com/ec2	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	55	of	61	

hand.	Table	7	compares	both	instance	types	concerning	number	of	GPUs,	(virtual)	CPUs,	(local)	memory	and	
(local)	storage.		

Model		 GPUs		 vCPU		 Mem	(GiB)		 SSD	Storage	(GB)		

g2.2xlarge		 1		 8		 15		 1	x	60		

g2.8xlarge		 4		 32		 60		 2	x	120		

Table	7:	Amazon	EC2	instances	for	graphics-intensive	applications.	

Both	instance	types	feature	one	or	four	high-performance	NVIDIA	GPUs	(each	with	1,536	CUDA	cores	and	4GB	
of	video	memory)	as	well	as	high-frequency	Intel	Xeon	E5-2670	processors	(8	cores,	2.6	GHz).	In	order	to	meet	
the	specification	requirements,	we	add	30	GB	SSD	storage	and	100	GB	HDD	storage	(EBS)	for	 logging.	 If	that	
amount	is	not	sufficient	it	might	be	worth	to	consider	Amazon’s	low-cost	cloud	storage	service	Amazon	Glacier	
which	is	up	to	75%	cheaper;	however,	access	times	vary	from	a	few	minutes	to	several	hours	and	additional	
data	retrieval	fees	apply.	The	most	suitable	operating	system	is	the	64-bit	version	of	Microsoft	Windows	Serv-
er	2016	which	comes	at	a	slightly	higher	cost	compared	to	Linux	instances.	Once	the	server	has	been	set	up,	
the	user	can	install	further	software	(such	as	the	Java	Runtime	Environment)	on	his	own	using	a	remote	con-
nection	and	set	up	a	static	IP	address	to	his	cloud	using	Elastic	IP	Address.	

In	the	following	we	calculate	the	expected	cost	per	24	hours	where	we	assume	to	use	the	closest	Availability	
Zone	 (Frankfurt	am	Main,	Germany)	 in	order	 to	minimize	 latency.	Pricing	 is	per	 instance-hour	consumed	for	
each	instance,	from	the	time	an	instance	is	launched	until	it	is	stopped.	Each	partial	instance-hour	consumed	
will	be	billed	as	a	full	hour.	Table	8	shows	the	cost	of	operating	a	single-GPU	instance	for	24	hours	whereas	Ta-
ble	9		shows	the	cost	of	an	instance	with	four	GPUs.		

	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	56	of	61	

Item	 Cost	per	unit	 Unit	 Cost	per	24	hours	

Instance	g2.2xlarge	(incl.	Windows	OS)	 $	0.906	 hour	 $	21.744	

Additional	cost	for	EBS-optimized	instance	 $	0.05	 hour	 $	1.20	

30	GB	SSD	Elastic	Block	Store	 $	0.119	 GB/month	 $	0.119	

100	GB	HDD	Elastic	Block	Store	 $	0.03	 GB/month	 $	0.10	

1	TB	data	transfer	per	month	(out	only)	 $	0.09	 GB	 $	3.00	

Static	IP	Address	 $	0.00	 hour	 $	0.00	

	 	 	 $	26.16	

Table	8:	Cost	per	24	hours	of	1-GPU	instance	operation	(Amazon	EC2).	

	

Item	 Cost	per	unit	 Unit	 Cost	per	24	hours	

Instance	g2.8xlarge	(incl.	Windows	OS)	 $	3.366	 hour	 $	80.784	

30	GB	SSD	Elastic	Block	Store	 $	0.119	 GB/month	 $	0.119	

100	GB	HDD	Elastic	Block	Store	 $	0.03	 GB/month	 $	0.10	

1	TB	data	transfer	per	month	(out	only)	 $	0.09	 GB	 $	3.00	

Static	IP	Address	 $	0.00	 hour	 $	0.00	

	 	 	 $	84.00	

Table	9:	Cost	per	24	hours	of	4-GPU	instance	operation	(Amazon	EC2).	

	

9.1.2 Microsoft	Azure	

Microsoft	Azure	offers	services	that	are	very	similar	to	Amazon’s	services:	Azure	Virtual	Machines16	allows	the	
user	 to	choose	 from	49	 instance	 types	which	are	grouped	 into	 the	same	categories	as	 the	 instance	 types	of	
Amazon’s	EC2:	general	purpose,	GPU	enabled,	compute	optimized,	memory	optimized,	storage	optimized	in-
stances	–	plus	a	group	named	“high-performance	computing”	containing	six	additional	instances.	Like	Amazon	
instances,	 Azure	 instances	 are	 constantly	 getting	 replaced	 by	 the	 latest	 generation	 of	 computing	 hardware,	
whereas	 older	 generations	 will	 still	 be	 offered	 at	 a	 discount.	 In	 contrast	 to	 AWS,	 Azure	 provides	 a	 decent	
amount	of	basic	RAM	and	storage	for	all	packets.	Additionally,	the	user	can	add	any	amount	of	scalable	cloud	
storage	 from	the	so-called	Data	Lake	Store	 (DLS).	For	bigger	amounts	of	data	with	 low	access	 rates	or	addi-
tional	data	redundancy	options,	Azure	Storage	might	be	an	economic	alternative.	The	user	can	choose	 from	
several	ready-to-use	operating	systems	such	as	Cent	OS,	Ubuntu,	Red	Hat,	R-Server,	SUSE	Linux,	and	Windows.	

																																																													
16	 	Microsoft	 Azure:	
https://azure.microsoft.com	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	57	of	61	

In	total,	Azure	provides	three	GPU-enabled	instance	types	that	meet	the	requirements	of	the	reference	speci-
fication.	Table	10		compares	the	instance	types	concerning	number	of	GPUs,	(virtual)	CPUs,	(local)	memory	and	
(local)	storage.	

Model		 GPUs		 vCPU		 Mem	(GiB)		 SSD	Storage	(GB)		

NV6	 1X	M60	 6	 56	 340	

NV12	 2X	M60	 12	 112	 680	

NV24	 4X	M60	 24	 224	 1,440	

Table	10:	Microsoft	Azure	instances	for	graphics-intensive	applications.	

All	 GPU-enabled	 instance	 types	 feature	 one,	 two,	 or	 four	 high-performance	NVIDIA	 TESLA-M60	GPUs	 (each	
with	4,096	CUDA	cores	and	16	GB	of	video	memory).	In	order	to	meet	the	specification	requirements,	we	do	
not	need	to	add	any	additional	storage,	as	the	smallest	 instance	type	already	comprises	of	340	GB	local	SSD	
storage.	The	most	suitable	operating	system	is	the	64-bit	version	of	Microsoft	Windows	Server	which	comes	at	
a	slightly	higher	cost	compared	to	Linux	instances.	Once	the	server	has	been	set	up,	the	user	can	install	further	
software	(such	as	the	Java	Runtime	Environment)	and	set	up	a	static	IP	address	at	additional	cost.	

Table	11,	Table	12	and	Table	13	show	the	cost	of	operating	a	single-GPU,	a	double-GPU,	or	quadruple-GPU	in-
stance	 of	Microsoft	 Azure	Virtual	Machines,	 respectively.	 The	 closest	 Region	 that	 provides	GPU-enabled	 in-
stances	is	Europe	North	(Ireland).	Pricing	is	per	instance-minute	consumed	for	each	instance,	from	the	time	an	
instance	is	launched	until	it	is	stopped.	

	

Item	 Cost	per	unit	 Unit	 Cost	per	24	hours	

Instance	NV6	(incl.	Windows	OS)	 $	1.46	 hour	 $	35.04	

1	TB	data	transfer	per	month	(out	only)	 $	0.087	 GB	 $	2.90	

Static	IP	Address	 $	0.004	 hour	 $	0.096	

	 	 	 $	38.04	

Table	11:	Cost	per	24	hours	of	1-GPU	instance	operation	(Microsoft	Azure).	

	

Item	 Cost	per	unit	 Unit	 Cost	per	24	hours	

Instance	NV12	(incl.	Windows	OS)	 $	2.92	 hour	 $	70.08	

1	TB	data	transfer	per	month	(out	only)	 $	0.087	 GB	 $	2.90	

Static	IP	Address	 $	0.004	 hour	 $	0.096	

	 	 	 $	73.08	

Table	12:	Cost	per	24	hours	of	2-GPU	instance	operation	(Microsoft	Azure).	

	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	58	of	61	

Item	 Cost	per	unit	 Unit	 Cost	per	24	hours	

Instance	NV24	(incl.	Windows	OS)	 $	5.83	 hour	 $	139.92	

1	TB	data	transfer	per	month	(out	only)	 $	0.087	 GB	 $	2.90	

Static	IP	Address	 $	0.004	 hour	 $	0.096	

	 	 	 $	142.92	

Table	13:	Cost	per	24	hours	of	4-GPU	instance	operation	(Microsoft	Azure).	

	

9.1.3 Google	Cloud	Platform	

Google’s	service	for	scalable	computing	on	demand	is	called	Google	Compute	Engine17.	In	contrast	to	Amazon	
EC2	and	Microsoft	Azure	Virtual	Machines,	this	service	does	not	only	provide	a	number	of	pre-defined	instance	
types,	but	rather	allows	the	customer	to	define	his	own	so-called	machine	types.	All	21	pre-defined	machine	
types	are	cheaper	compared	to	the	equivalent	custom	machine	type;	however,	 it	could	pay	off	to	build	your	
own	type	if	choosing	the	next	bigger	pre-defined	type	could	be	avoided.	Unlike	competitive	cloud	providers,	
Google	 does	 not	 provide	 GPU-enabled	machine	 types	 by	 default.	 Instead,	 Google	 Compute	 Engine	 GPUs	 –	
which	is	still	in	beta	release	–	allows	adding	up	to	4	NVIDIA	Tesla	K80	GPUs	(4,992	NVIDIA	CUDA	cores,	24	GB	
video	memory)	 to	any	machine	type.	 In	order	to	compare	Google’s	service	to	Amazon’s	and	Microsoft’s,	we	
choose	the	smallest	pre-defined	machine	type	that	meets	the	requirements	of	the	reference	specification	and	
furthermore	build	a	custom	machine	type	according	to	the	exact	requirements.	Table	14	compares	both	ma-
chine	types	concerning	number	of	GPUs,	(virtual)	CPUs,	(local)	memory	and	(local)	storage.		

	

Model		 GPUs		 vCPU		 Mem	(GiB)		 SSD	Storage	(GB)		

n1-standard-8	 1	 8	 30	 0	

CUSTOM	 1	 8	 15	 0	

Table	14:	Google	Compute	Engine	instances	for	graphics-intensive	applications.	

In	addition	to	the	computational	capabilities,	Google	Computing	Engine	provides	30	GB	of	HDD	persistent	disk	
storage	per	month	free	of	charge;	additional	storage	can	be	added.	Furthermore,	premium	images	containing	
one	of	the	following	operating	systems	are	available	at	extra	charge:	Debian,	CentOS,	CoreOS,	SUSE,	Ubuntu,	
Red	Hat,	FreeBSD,	or	Windows	Server	2008	R2,	2012	R2,	and	2016.	

In	order	to	meet	the	specification	requirements,	we	add	30	GB	SSD	storage	as	well	as	70	GB	HDD	storage	to	
the	 free	 quota	 and	 select	Microsoft	Windows	 Server	 2016	 64-bit	 as	 operating	 system.	Once	 the	 server	 has	
been	set	up,	the	Java	Runtime	Environment	can	be	installed	by	the	user	and	a	static	IP	address	can	be	set	up	at	
no	extra	charge.	

Table	15	and	Table	16	show	the	cost	of	operating	the	most	suitable	pre-defined	and	custom	machine	type	us-
ing	a	single	GPU,	respectively,	where	prices	are	valid	for	a	cloud	located	in	Belgium.	Instance	uptime	is	round-
ed	up	to	the	nearest	minute;	however,	Google	Compute	Engine	bills	for	a	minimum	of	10	minutes	of	usage.		

	

																																																													
17	 	Google	 Compute	 Engine:	
http://console.cloud.google.com/compute	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	59	of	61	

Item	 Cost	per	unit	 Unit	 Cost	per	24	hours	

Instance	n1-standard-8	 $	0.4184	 hour	 $	10.0416	

GPU	(NVIDIA	Tesla	K80)	 $	1.54	 hour	 $	36.96	

30	GB	SSD	Elastic	Block	Store	 $	0.17	 GB/month	 $	0.17	

70	GB	HDD	Elastic	Block	Store	 $	0.04	 GB/month	 $	0.0933	

Windows	Server	image	 $	0.32	 hour	 $	7.68	

1	TB	data	transfer	per	month	(out	only)	 $	0.12	 GB	 $	4.00	

Static	IP	Address	 $	0.00	 hour	 $	0.00	

	 	 	 $	58.94	

Table	15:	Cost	per	24	hours	of	pre-defined	1-GPU	instance	operation	(Google	Compute	Engine).	

	

Item	 Cost	per	unit	 Unit	 Cost	per	24	hours	

Custom	instance	8	vCPUs	 $	0.291912	 hour	 $	7.0059	

Custom	instance	16	GB	memory	 $	0.078272	 hour	 $	1.8785	

GPU	(NVIDIA	Tesla	K80)	 $	1.54	 hour	 $	36.96	

30	GB	SSD	Elastic	Block	Store	 $	0.17	 GB/month	 $	0.17	

70	GB	HDD	Elastic	Block	Store	 $	0.04	 GB/month	 $	0.093	

Windows	Server	image	 $	0.32	 hour	 $	7.68	

1	TB	data	transfer	per	month	(out	only)	 $	0.12	 GB	 $	4.00	

Static	IP	Address	 $	0.00	 hour	 $	0.00	

	 	 	 $	57.79	

Table	16:	Cost	per	24	hours	of	custom	1-GPU	instance	operation	(Google	Compute	Engine).	

Comparing	the	prices	of	the	pre-defined	machine	instance	and	the	custom	instance	reveals	no	big	difference.	
On	the	one	hand,	the	custom	instance	is	$	1.15	cheaper	per	24	hours;	on	the	other	hand,	the	pre-defined	ma-
chine	 type	 is	equipped	with	 the	double	amount	of	memory.	 Increasing	 the	number	of	GPUs	 is	possible	 to	a	
maximum	of	4,	while	the	price	of	the	GPU-hour	is	increasing	proportionally.	Table	17	shows	the	cost	of	operat-
ing	the	aforementioned	setup	for	24	hours	with	one,	two	and	four	GPUs.	

	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	60	of	61	

Item	 Cost	per	24	hours	

Instance	n1-standard-8	with	1	GPU	 $	58.94	

Instance	n1-standard-8	with	2	GPU	 $	95.90	

Instance	n1-standard-8	with	4	GPU	 $	169.82	

Table	17:	Cost	per	24	hours	of	pre-defined	1-GPU,	2-GPU,	and	4-GPU	instance	operation	(Google	Compute	
Engine).	

9.1.4 Conclusions	
Comparing	the	prices	of	operating	the	same	setup	with	Microsoft	Azure	and	Google	Compute	Engine	shows	a	
considerable	difference.	No	matter	what	number	of	GPUs	will	be	used,	Google	 is	up	to	35%	more	expensive	
than	competitor	Microsoft.	Taking	a	closer	look	at	Amazon	reveals	the	lowest	price	for	the	1-GPU	setup;	how-
ever,	one	must	keep	in	mind	that	the	smallest	Amazon	instance	type	(“g2.2xlarge”)	is	 less	powerful	than	the	
smallest	Microsoft	 instance	 type	 (“NV6”).	While	 the	GPU	used	at	Amazon	consists	of	only	1664	CUDA	cores	
and	4	GB	video	memory,	Microsoft	(and	Google)	utilizes	GPUs	consisting	of	4,096	(4,992)	CUDA	cores	and	16	
(24)	GB	 video	memory.	Amazon’s	 biggest	 instance	 type	 (“g2.8xlarge”)	 is	 on	 the	 same	 level	with	Microsoft’s	
mid-size	instance	type	(“NV12”)	for	a	slightly	higher	price,	whereas	Amazon	lacks	of	instance	types	comparable	
to	Microsoft’s	biggest	instance	type	(“NV24”).	

Overall,	the	cheapest	solution	which	meets	the	requirements	of	the	reference	specification	is	provided	by	Am-
azon	(“g2.2xlarge”)	using	one	GPU	at	$	26.16	per	day.	If	more	computing	power	is	needed,	Microsoft	provides	
solutions	with	two	(“NV12”)	or	four	(“NV24”)	GPUs	at	$	73.08	or	$	149.92	per	day,	respectively.	Google	cannot	
compete.	

	

	

	

	

D1.2	–	System	Architecture	(Release	1)		 	 Grant	Agreement	No.	731593	

Dreams4Cars	 	 Page	61	of	61	

	

